View clinical trials related to Anaplastic Astrocytoma.
Filter by:This drug is being developed to treat a type of brain cancer, glioma. This study was developed to evaluate the safety, time to disease progression and survival rates after treatment.
This phase II trial is studying how well giving radiation therapy together with temozolomide and lomustine works in treating young patients with newly diagnosed gliomas. Radiation therapy uses high energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide and lomustine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving radiation therapy together with temozolomide and lomustine after surgery may kill any remaining tumor cells.
This Phase 1 study in patients with newly diagnosed malignant glioma is designed to determine the highest dose of IL13-PE38QQR that can be safely administered by Convection Enhanced Delivery (CED) to the area around the tumor site after the tumor is surgically removed (resection). In addition, the patient will receive radiation therapy and may or may not be treated with oral temozolomide.
The experimental anti-cancer drug IL13-PE38QQR, which is being developed for the treatment of malignant brain tumors, is composed of parts of two proteins: the immune system cytokine IL13 and a toxin from the bacterium Pseudomonas aeruginosa. The IL13 part of the drug binds to another protein, the IL13 receptor, when this receptor is displayed on the outside surface of cells. Cells with drug bound to the IL13 receptor take up the drug, and the toxin part of the drug then kills those cells. Since brain tumor cells display the IL13 receptor, they are potential targets that may be killed by this drug. This is a pilot study to visualize the distribution of IL13-PE38QQR infused into and around brain tumor tissue before and after surgical removal of the tumor in adult patients with recurrent malignant glioma. Stored tumor tissue will be tested for presence of the receptor protein, which is required for study entry. Eligible patients will then undergo biopsy to confirm the diagnosis of recurrent malignant glioma. IL13-PE38QQR will be infused for 96 hours into and around tumor tissue through catheters that have been placed surgically. For the first 48 hours the drug will be mixed with a radioactive tracer, so that the distribution of the drug can be followed by a type of scanning called SPECT. Surgery to remove the tumor will be performed approximately 15 days after the end of the infusion. Catheters will again be placed surgically, and IL13-PE38QQR will be infused a second time for 96 hours. Radioactive tracer will be included in the infusion for the first 48 hours. For both infusions, SPECT scans will be taken at 6, 24, and 48 hours after the start of infusion. MRI scans will be taken within 90 minutes of the 24 and 48 hour SPECT scans. Patients will be followed closely with further scans and laboratory tests until completion of the study approximately 58 days after completion of the second infusion.
To analyze the effect of Talampanel on progression free survival in patients with recurrent high grade gliomas.
IL13-PE38QQR is an oncology drug product consisting of IL13 (interleukin-13) and PE38QQR (a bacteria toxin). IL13-PE38QQR is a protein that exhibits cell killing activity against a variety of IL13 receptor-positive tumor cell lines indicating that it may show a therapeutic benefit. In reciprocal competition experiments, the interaction between IL13-PE38QQR and the IL13 receptors was shown to be highly specific for human glioma cells. Prior to treatment, patients will have physical and neurologic exams, MRI to measure the extent of tumor, tumor biopsy, and screening laboratory tests. On Day 1, one or two catheters will be inserted directly into the tumor, after which a CT scan will be used to confirm placement. Each patient will receive one IL13-PE38QQR infusion, and the tumor will be surgically removed on approximately Day 15. In the first group of patients, IL13-PE38QQR will be infused directly into the tumor for 4 days. Depending on effectiveness or side effects of the study drug, the duration will be increased stepwise to a maximum of 7 days in subsequent groups of patients. Once duration of infusion has been determined, the dose of IL13-PE38QQR will be increased stepwise (in separate groups of patients), depending on effectiveness or side effects of the study drug. The activity of the drug against the tumor cells will be judged by examining the removed tumor tissue. Patients will have neurologic exams and MRI scans immediately after the resection and every eight weeks until disease progression is observed.
The objective of this study is to evaluate patients with tumors of the central nervous system (CNS) for eligibility in the National Cancer Institute s research studies. These patients will undergo a series of procedures, usually including a complete medical history and physical examination; laboratory testing of blood, CSF, urine, bone marrow, or other samples; an evaluation of tumor location and size by x-rays, CT (computed tomography) or MRI (magnetic resonance imaging) scans, or nuclear medicine scans; lumbar puncture; electrocardiogram and echocardiogram; and procedures to evaluate the function of specific organs. A bone marrow biopsy is occasionally performed. Research samples may also be collected and stored to avoid having to do a painful test more than once. Tissue specimens collected during this process may be stored and used in future studies. Patients of both genders, any age, and all racial and ethnic groups with tumors of the CNS or a history of a CNS tumor are eligible. Up to 100 people are expected to participate. The physician will discuss the results of these procedures with the patient and his or her family. On the basis of the eligibility screening and the patient s wishes, the patient may then be enrolled in a primary research protocol.
This study will analyze tissue and blood samples from patients with gliomas (a type of brain tumor) to develop a new classification system for these tumors. Tumor classification can help guide treatment, in part by predicting how aggressive a tumor may be. Gliomas are currently classified according to their grade (how quickly they may grow) and the type of cells they are composed of. This system, however, is not always accurate, and sometimes two tumors that appear to be identical under the microscope will have very different growth patterns and responses to treatment. The new classification system is based on tumor genes and proteins, and may be used in the future to better predict a given tumor s behavior and response to therapy. Patients with evidence of a primary brain tumor and patients with a known glioma who will be undergoing surgery to remove the tumor may participate in this study. A sample of tumor tissue removed in the course of a participant s normal clinical care will be used in this study for laboratory analysis of genes and chromosome abnormalities. A small blood sample will also be collected for genetic analysis. In addition, clinical information on patients condition and response to treatment will be collected every 6 months over several years. This information will include findings from physical and neurologic examinations, radiographic findings, and response to therapy, including surgery, radiation and chemotherapy.
In this study an investigational replication-defective, recombinant adenovirus expressing the interferon-beta gene (BG00001) will be directly injected into tumors, in patients with recurrent Grade III and Grade IV Gliomas, in order to deliver the hIFN-beta gene. The purpose of the study is to evaluate the safety and any harmful effects of injection of BG00001 into brain tumors. Also, this study will help determine whether the virus carrying the beta interferon gene will enter brain tumor cells and cause the cancer cells to die. This study will require one hospital admission for the actual procedure of drug administration. All other visits will be conducted on an out-patient basis
IL13-PE38QQR is an oncology drug product consisting of IL13 (interleukin-13) and PE38QQR (a bacteria toxin). IL3-PE38QQR is a protein that exhibits cell killing activity against a variety of IL13 receptor-positive tumor cell lines indicating that it may show a therapeutic benefit. In reciprocal competition experiments, the interaction between IL13-PE38QQR and the IL13 receptors was shown to be highly specific for human glioma cells. IL13-PE38QQR will be infused in two courses of 96 hours each, eight weeks apart, directly into the malignant brain tumors of patients to determine the dose of drug these patients can tolerate. After that, the selected dose will be studied to give an estimate of the response rate, response duration, time to response, and survival after infusing that dose of IL13-PE38QQR into the recurrent malignant glioma.