Clinical Trials Logo

Clinical Trial Summary

To document therapeutic gain achieved by cyclic application of L-ascorbic acid (LAA) supplementation and depletion, while confirming safety and avoidance of clinically significant scurvy, in chemorefractory patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS).


Clinical Trial Description

The seminal discovery that the in vitro growth of malignant cells could be absolutely dependent on L-ascorbic acid (LAA) was originally published in Sciene. The cell culture assay used with a mouse plasmacytoma model in this discovery was based on colony formation, and was essentially the same as the one used to grow normal hemopoietic colonies, such as CFU-GM and CFU-G, from normal bone marrow specimens. Subsequent analysis of the growth factors for these CFUs using this same culture system eventually led to the discovery of colony stimulating factors, such as GM-CSF and G-CSF, now widely used clinically. Human leukemia, specifically acute myeloid leukemia (AML), cell colonies also grow well in this culture system, as shown by extensive cell biology studies. In addition, cells from patients with myelodysplastic syndrome (MDS), a significant proportion of them progressing to AML behave similarly to AML cells in this culture system . In particular both AML and MDS are identical in that the growth of colonies is enhanced by addition of LAA to the cell culture media in a high proportion of these patients.

The large volume of in vitro data thus generated, including correlations with direct clinical relevance is increasingly convincing that lowering of LAA levels could potentially be developed and utilized as a treatment for specific hemopoeitic malignancies. This was particularly attractive in view of the fact that the growth of normal hemopoietic colonies, such as CFU-GM and CFU-G, is never enhanced by LAA. Such an absolute selectivity would predict a lack of clinical adverse hemopoetic events from an intervention which lowered LAA levels. We also had seemingly-contradictory data that the growth of colonies from AML and MDS patients could be suppressed by addition of LAA, infrequently but sometimes profoundly. However, detailed dose response analysis later clarified this: low physiologic doses enhance and high pharmacologic doses suppress formation of leukemic colonies. From a therapeutic perspective, we would have greater expectations for a depletion strategy than for supplementation, because 1) leukemic suppression by addition of LAA is often accompanied by some mild suppression of the normal CFU and therefore is not absolutely selective; and 2) LAA supplementation has been clinically tested in a variety of solid tumors, with controversial outcomes.

Therefore, our original protocol was developed primarily to accomplish lowering of LAA levels, with a subsequent oral LAA supplementation used primarily to prevent scurvy and only secondarily for possible benefit. However, with the first patient there was a strong indication of antileukemic effects during both the LAA depletion and supplementation phases. Based on this encouragement, the protocol was amended to formally alternate depletion with supplementation, and to utilize intravenous (IV) administration of LAA to achieve high dose supplementation. With 17 subsequent subjects having been treated, this study of the safety and efficacy of cyclic manipulation of LAA levels has demonstrated beneficial outcome in a high proportion of refractory and terminal patients with AML or MDS. Moreover, growing laboratory evidence being produced provides a molecular basis for these clinical outcomes. ;


Study Design

Allocation: Non-Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT00329498
Study type Interventional
Source Samsung Medical Center
Contact
Status Suspended
Phase Phase 2
Start date May 1998
Completion date August 2005

See also
  Status Clinical Trial Phase
Recruiting NCT05400122 - Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer Phase 1
Recruiting NCT04460235 - Immunogenicity of an Anti-pneumococcal Combined Vaccination in Acute Leukemia or Lymphoma Phase 4
Completed NCT04022785 - PLX51107 and Azacitidine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Phase 1
Completed NCT03678493 - A Study of FMT in Patients With AML Allo HSCT in Recipients Phase 2
Recruiting NCT05424562 - A Study to Assess Change in Disease State in Adult Participants With Acute Myeloid Leukemia (AML) Ineligible for Intensive Chemotherapy Receiving Oral Venetoclax Tablets in Canada
Completed NCT03197714 - Clinical Trial of OPB-111077 in Patients With Relapsed or Refractory Acute Myeloid Leukaemia Phase 1
Terminated NCT03224819 - Study of Emerfetamab (AMG 673) in Adults With Relapsed/Refractory Acute Myeloid Leukemia (AML) Early Phase 1
Active, not recruiting NCT03844048 - An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial Phase 3
Active, not recruiting NCT04070768 - Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients With Relapsed or Refractory CD33+ Acute Myeloid Leukemia:Big Ten Cancer Research Consortium BTCRC-AML17-113 Phase 1
Active, not recruiting NCT04107727 - Trial to Compare Efficacy and Safety of Chemotherapy/Quizartinib vs Chemotherapy/Placebo in Adults FMS-like Tyrosine Kinase 3 (FLT3) Wild-type Acute Myeloid Leukemia (AML) Phase 2
Recruiting NCT04385290 - Combination of Midostaurin and Gemtuzumab Ozogamicin in First-line Standard Therapy for Acute Myeloid Leukemia (MOSAIC) Phase 1/Phase 2
Recruiting NCT04920500 - Bioequivalence of Daunorubicin Cytarabine Liposomes in Naive AML Patients N/A
Recruiting NCT03897127 - Study of Standard Intensive Chemotherapy Versus Intensive Chemotherapy With CPX-351 in Adult Patients With Newly Diagnosed AML and Intermediate- or Adverse Genetics Phase 3
Active, not recruiting NCT04021368 - RVU120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome Phase 1
Recruiting NCT03665480 - The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML Phase 2/Phase 3
Completed NCT02485535 - Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant Phase 1
Enrolling by invitation NCT04093570 - A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers Phase 2
Recruiting NCT04069208 - IA14 Induction in Young Acute Myeloid Leukemia Phase 2
Recruiting NCT05744739 - Tomivosertib in Relapsed or Refractory Acute Myeloid Leukemia (AML) Phase 1
Recruiting NCT04969601 - Anti-Covid-19 Vaccine in Children With Acute Leukemia and Their Siblings Phase 1/Phase 2