Acute Lung Injury Clinical Trial
Official title:
Randomized Crossover Trial to Compare Driving Pressures in a Closed-loop and a Conventional Mechanical Ventilation Mode in Pediatric Patients
In mechanically ventilated patients, driving pressure (ΔP) assess the strain applied to the respiratory system and is related to ICU mortality. The aim of this randomized cross-over trial was to compare ΔP selected by a closed-loop system and by physician tailored mechanical ventilation mode. Pediatric patients admitted to PICU will be enrolled if they were invasively ventilated without any detectable respiratory effort, hemodynamic instability, or significant leakages. Two 60 minute periods of ventilation determined by randomization in APV-CMV and ASV 1.1 will be compared. Settings were adjusted to reach the same minute ventilation in both modes. ΔP will be calculated as the difference between plateau pressure and total PEEP measured using end-inspiratory and end-expiratory occlusion maneuvers, respectively.
In 2015, Pediatric Acute Lung Injury Consensus Conference (PALICC) determined the pediatric acute respiratory distress syndrome (PARDS) definition. PALICC recommends using patient-specific tidal volume (VT) according to disease severity. Moreover, in the absence of transpulmonary pressure measurements (PL), an inspiratory plateau pressure limit of 28 cm H2O is recommended, allowing for slightly higher plateau pressures (29-32 cm H2O) for patients with reduced chest wall compliance. In adult ARDS, Amato et al. normalized VT to the compliance(C) by using driving pressure (ΔP) and reported that ΔP was the ventilation variable that best-stratified risk. Changes in ventilator settings resulting in a decrease in ΔP were associated with increased survival. One of the most common modes used in pediatric ventilation nowadays is synchronized controlled mandatory ventilation with adaptive pressure ventilation (APV-CMV). As compared to pressure control mode (P-CMV), APV-CMV prevents low or high VT when the compliance changes by adjusting the applied pressure. Adaptive support ventilation (ASV) is closed-loop ventilation mode, which for a given minute volume set by the clinician, adapts tidal volume (VT) and respiratory rate (RR) according to the patient's respiratory mechanics. This prospective randomized cross over study aimed to compare ΔP between physician tailored APV-CMV mode and ASV 1.1 in pediatric mechanically ventilated patients with acute respiratory failure. After the enrollment, the patients' ventilation periods will be determined by randomization using sealed opaque envelopes. The minute ventilation, fraction of inspired O2 (FiO2) and positive end-expiratory pressure (PEEP) set by the clinician before study inclusion will be kept unchanged during all study periods. Patients will be ventilated in each mode for 60 minutes. Three consecutive -inspiratory and end-expiratory occlusion will be performed at 30 and 60 min and ΔP will be calculated for each period. Arterial blood gas will be measured at the end of each period. A wash-out period of 30 min using the ventilation mode and setting before inclusion will be performed in between the two study ventilation periods. ΔP will be calculated as the difference between plateau pressure (Pplat) and total PEEP and will be averaged for each ventilation period by using the mean of the six measurements mentioned above. VT will be calculated by integration of flow measurement. Resistance will be calculated by the least-squares fitting method. The expiratory time constant (RCexp) will be derived from the volume-flow curve at 75% of the VT and corresponding flow value. Static compliance (Cstat) will be calculated as VT divided by ΔP. The primary outcome will be ΔP. The secondary outcome will be VT, RR, Pplat, Ti, Te, Cstat, Resistance, RCexp, pH, PaO2, PaCO2 A pilot study was performed to calculate the sample size. The mean ΔP was 12.4 (±3.31) cm H2O in ASV 1.1 and 13.5 (±4.2) cm H2O in APV-CMV. By using these pilot data, and assuming the power of 0.95 and α-error of 0.05, investigators have calculated the study size as 26 patients. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT03937947 -
Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
|
||
Completed |
NCT04247477 -
Comparison of Different PEEP Titration Strategies Using Electrical Impedance Tomography in Patients With ARDS
|
N/A | |
Completed |
NCT03315702 -
Effect of Mechanical Ventilation on Plasma Concentration Level of R-spondin Proteins
|
||
Not yet recruiting |
NCT02693912 -
Changes in Alveolar Macrophage Function During Acute Lung Injury
|
N/A | |
Completed |
NCT01659307 -
The Effect of Aspirin on REducing iNflammation in Human in Vivo Model of Acute Lung Injury
|
Phase 2 | |
Completed |
NCT01552070 -
Recruitment on Extravascular Lung Water in Acute Respiratory Distress Syndrome (ARDS)
|
Phase 2 | |
Unknown status |
NCT01186874 -
Epidemiology Research on Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) in Adult ICU in Shanghai
|
N/A | |
Withdrawn |
NCT00961168 -
Work of Breathing and Mechanical Ventilation in Acute Lung Injury
|
N/A | |
Recruiting |
NCT00759590 -
Comparison of Two Methods to Estimate the Lung Recruitment
|
N/A | |
Completed |
NCT02475694 -
Acute Lung Injury After Cardiac Surgery: Pathogenesis
|
N/A | |
Completed |
NCT00736892 -
Incidence of Acute Lung Injury: The Alien Study
|
||
Completed |
NCT00825357 -
Biological Markers to Identify Early Sepsis and Acute Lung Injury
|
N/A | |
Terminated |
NCT00263146 -
Recruitment Maneuvers in ARDS: Effects on Respiratory Function and Inflammatory Markers.
|
N/A | |
Completed |
NCT00188058 -
Comparison of 2 Strategies of Adjustment of Mechanical Ventilation in Patients With Acute Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT00234767 -
Study of the Economics of Pulmonary Artery Catheter Use in Patients With Acute Respiratory Distress Syndrome (ARDS)
|
Phase 3 | |
Recruiting |
NCT02598648 -
Role and Molecular Mechanism of Farnesoid X Receptor(FXR) and RIPK3 in the Formation of Acute Respiratory Distress Syndrome in Neonates
|
N/A | |
Recruiting |
NCT02948530 -
Measurement of Lung Elastance and Transpulmonary Pressure Using Two Different Methods (Lungbarometry)
|
||
Completed |
NCT01532024 -
Exploratory Clinical Study of Neutrophil Activation Probe (NAP) for Optical Molecular Imaging in Human Lungs
|
Early Phase 1 | |
Recruiting |
NCT01992237 -
Measuring Energy Expenditure in ECMO (Extracorporeal Membrane Oxygenation) Patients
|
N/A | |
Completed |
NCT01486342 -
PET Imaging in Patients at Risk for Acute Lung Injury
|
N/A |