View clinical trials related to Acute Lung Injury.
Filter by:Acute respiratory distress syndrome (ARDS) is a syndromic definition of an acute lung injury with alteration of biomechanics (lower respiratory system compliance) mostly associated with increased lesional edema. Increase in Pulmonary Vascular Permeability Index (PVPI) accompanied with accumulation of excess Extravascular Lung Water (EVLW) is the hallmark of ARDS. In routine clinical practice, the investigators measure the EVLW and PVPI in ARDS patients, as suggested by expert's recommendations, using a transpulmonary thermodilution (TPTD) technique. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly recognized illness that has spread rapidly throughout Wuhan (Hubei province) to other provinces in China and around the world. Most critically ill patients with SARS-CoV-2 will present the criteria for the definition of ARDS. However, many of these patients have a particular form of ARDS with severe hypoxemia often associated with near normal respiratory system compliance. This combination is almost never seen in severe ARDS. Thus other mechanisms (including probably vascular mechanisms), that are still poorly described, have to be involved in SARS-CoV-2. EVLW and PVPI have never been assessed in SARS-CoV-2 mechanically ventilated patients. The aim of this study is to evaluate these two parameters in order to best characterize and understand the mechanisms related to SARS-CoV-2. Based on observation of several cases in intensive care units (ICU), the investigators hypothesize that there are following different SARS-CoV-2 patterns: 1. Nearly normal compliance, low lung recruitability, normal EVLW and low PVPI. 2. Low compliance due to increased edema, high lung recruitability, high EVLW and high PVPI.
Prospective, mono centric study on COVID-19 patients with or without acute respiratory distress syndrome (ARDS) to analyse the dynamics of the immune response and to search for biomarkers of evolution
The mortality rate in SARS-CoV-2-related severe ARDS is high despite treatment with antivirals, glucocorticoids, immunoglobulins, and ventilation. Preclinical and clinical evidence indicate that MSCs migrate to the lung and respond to the pro-inflammatory lung environment by releasing anti-inflammatory factors reducing the proliferation of pro-inflammatory cytokines while modulating regulatory T cells and macrophages to promote resolution of inflammation. Therefore, MSCs may have the potential to increase survival in management of COVID-19 induced ARDS. The primary objective of this phase 3 trial is to evaluate the efficacy and safety of the addition of the mesenchymal stromal cell (MSC) remestemcel-L plus standard of care compared to placebo plus standard of care in patients with acute respiratory distress syndrome (ARDS) due to SARS-CoV-2. The secondary objective is to assess the impact of MSCs on inflammatory biomarkers.
Acute respiratory distress syndrome (ARDS) is defined using the clinical criteria of bilateral pulmonary opacities on a chest radiograph, arterial hypoxemia (partial pressure of arterial oxygen [PaO2] to fraction of inspired oxygen [FiO2] ratio ≤ 300 mmHg with positive end-expiratory pressure [PEEP] ≥ 5 cmH2O) within one week of a clinical insult or new or worsening respiratory symptoms, and the exclusion of cardiac failure as the primary cause. ARDS is a fatal condition for intensive care unit (ICU) patients with a mortality between 30 and 40%, and a frequently under-recognized challenge for clinicians. Patients with severe symptoms may retain sequelae that have recently been reported in the literature. These sequelae may include chronic respiratory failure, disabling neuro-muscular disorders, and post-traumatic stress disorder identical to that observed in soldiers returning from war. The management of a patient with ARDS requires first of all an optimization of oxygenation, which relies primarily on mechanical ventilation, whether invasive or non-invasive (for less severe patients). Since the ARDS network study published in 2000 in the New England Journal of Medicine, it has been internationally accepted that tidal volumes must be reduced in order to limit the risk of alveolar over-distension and ventilator-induced lung injury (VILI). A tidal volume of approximately 6 mL.kg-1 ideal body weight (IBW) should be applied. Routine neuromuscular blockade of the most severe patients (PaO2/FiO2 < 120 mmHg) is usually the rule, although it is increasingly being questioned. Comprehensive ventilatory management is based on the concepts of baby lung and open lung, introduced respectively by Gattinoni and Lachmann. According to these concepts, it must be considered that the lung volume available for mechanical ventilation is very small compared to the healthy lung for a given patient (baby lung) and that the reduction in tidal volume must be associated with the use of sufficient PEEP and alveolar recruitment maneuvers to keep the lung "open" and limit the formation of atelectasis. In addition to this optimization of mechanical ventilation, it is possible to reduce the impact of mechanical stress on the lung. The prone position, for example, makes it possible to free from certain visceral and mediastinal constraints, to optimize the distribution of ventilation as well as the ventilation to perfusion ratios. Thanks to the technological progress of intensive care beds, it is now possible to verticalize ventilated and sedated patients in complete safety. Verticalization could reduce the constraints imposed to the lungs, by reproducing the more physiological vertical station, and thus modifying the distribution of ventilation. Indeed, in two physiological studies published in 2006 and 2013 in Intensive Care Medicine, 30 to 40% of patients with ARDS appeared to respond to partial body verticalization at 45° and 60° (in a semi-seated or seated position). In addition to improving arterial oxygenation, verticalization appeared to decrease ventilatory stress, related to supine position, and increase alveolar recruitment, with improved lung compliance and end-expiratory lung volume (EELV) over time. Nevertheless, 90° verticalization has never been studied, nor have positions without body flexion (seated or semi-seated). In these studies, only patients with the highest lung compliance appeared to respond. These data support the current hypothesis of subgroups of patients with ARDS with different pathophysiological characteristics (morphological and phenotypic) and therapeutic responses. The investigators hypothesize that verticalization of patients with ARDS improves ventilatory mechanics by reducing the constraints imposed on the lung (transpulmonary pressure), pulmonary aeration, arterial oxygenation and ventilatory parameters. The first objective is to study the influence of the bed position of the patient with early ARDS on the variations in respiratory mechanics represented by the transpulmonary driving pressure (ΔPtp). The second objective is to evaluate changes in ventilatory physiology, tolerance and feasibility of verticalization in patients with early ARDS.
This phase II expanded access trial will study how well tocilizumab works in reducing the serious symptoms including pneumonitis (severe acute respiratory distress) in patients with cancer and COVID-19. COVID-19 is caused by the SARS-CoV-2 virus. COVID-19 can be associated with an inflammatory response by the immune system which may also cause symptoms of COVID-19 to worsen. This inflammation may be called "cytokine storm," which can cause widespread problems in the body. Tocilizumab is a medicine designed to block the action of a protein called interleukin-6 (IL-6) that is involved with the immune system and is known to be a key factor for problems with excessive inflammation. Tocilizumab is effective in treating "cytokine storm" from a type of cancer immunotherapy and may be effective in reducing the inflammatory response and "cytokine storm" seen in severe COVID-19 disease. Treating the inflammation may help to reduce symptoms, improve the ability to breathe without a breathing machine (ventilator), and prevent patients from having more complications.
With the influx of patients suspected of Covid-19 and the limited number of hospital beds, there is a need for sensitive triage to detect patients at risk of pulmonary complications and therefore requiring hospitalization, but also specific triage to safely discharge patients without risk factors or signs of clinical or ultrasound severity. The use of pulmonary ultrasound in addition to clinical assessment seems appropriate. Indeed, it allows early detection of signs of pneumopathy which, in the current context, most often correspond to Covid-19. These signs include B-lines, which indicate interstitial pulmonary oedema, and an anfractuous and thickened pleural line, or even centimetric parenchymal condensations with a low level of pleural effusion. Conversely, the presence of a medium to large pleural effusion is not very suggestive of the diagnosis of Covid-19. In addition, a lung ultrasound score has been developed and validated to assess the severity of acute respiratory distress and predict the occurrence of acute respiratory distress syndrome. It is based on the performance of a 12-point (6 per hemi-thorax) pulmonary ultrasound with the collection of the presence of B-lines, condensation or pleural effusion. In the hands of a trained operator, this examination takes only a few minutes. The aim of the study is to develop a score based on clinical and ultrasound evidence to allow early and safer referral than that based on clinical evidence alone. To do this, the study will retrospectively collect clinical and lung ultrasound data from departments that use this technique on a daily basis.
The purpose of this pilot study is to measure the impact of non-invasive pneumatic manipulation of transthoracic pressure on oxygenation in patients with Acute Respiratory Distress Syndrome (ARDS) due to Coronavirus Disease 2019 (COVID 19) who are on mechanical ventilator support. This will be achieved by a pneumatic Vest placed around the chest wall of consenting patients who meet inclusion criteria. The Vest is essentially a non-invasive segmental device placed upon the anterior and posterior right and left aspects of the chest wall. The researchers have the ability to inflate and deflate the chambers of the Vest to achieve preset pressures as determined by the protocol and observe the patient's physiological response. Participants will have up to four hours of intervention with the study intervention, followed by 1 hour of post-intervention observation.
This study evaluated the efficacy, safety, pharmacokinetics, and pharmacodynamics of ravulizumab administered in adult participants with coronavirus disease 2019 (COVID-19) severe pneumonia, acute lung injury, or acute respiratory distress syndrome. Participants were randomly assigned to receive ravulizumab in addition to best supportive care (BSC) (2/3 of the participants) or BSC alone (1/3 of the participants). BSC consisted of medical treatment and/or medical interventions per routine hospital practice.
The primary objective of the study is to compare the mechanical power applied to the respiratory system in patient with acute respiratory distress syndrome in supine positioning and after the implementation of prone positioning while mantaining the same ventilatory setting. The secondary objetive of the study is to compare the mechanical power applied to the respiratory system in patient with acute respiratory distress syndrome in supine positioning and after the implementation of prone positioning and adjusting an individualized ventilatory setting.
The objectives of this intermediate-size expanded access protocol are to assess the safety and efficacy of remestemcel-L in participants with ARDS due to coronavirus infection 2019 (COVID-19).