View clinical trials related to Acute Lung Injury.
Filter by:Recent evidence regarding the novel coronavirus disease 2019 (COVID19) is growing in describing the characteristics of this disease, with main focus on lung morphology. Few data are available regarding the peripheral and respiratory muscular characteristics. Using a ultrasound greyscale analysis, It Is possibile to evaluated the muscle quality. The hypothesis of this studi is that a combined assessment of respiratory (i.e., intercostal and diaphragm) and peripheral (i.e., quadriceps) muscles quantity (as measured by thickness) and quality (as assessed by greyscale analysis), would reflect the severity of illness. Thus,the aims of this study are to assess if the quality characteristics of parasternal intercostal, diaphragm and quadriceps muscles of ICU COVID19 patients influenced the outcomes and are correlated with other variables, such as fluid or protein balance, or indexes of inflammation
Acute respiratory insufficiency is one of the principal causes of intensive care admission for COVID 19 positive patients. This may determine a variable mortality rate ranging from 25-30%. In these patients, many days of non-invasive or invasive mechanical ventilation are needed to correct severe hypoxemia. Mechanical ventilation is not a direct therapy but allows the clinicians to prolong the "time-to-recovery" interval necessary for COVID 19 respiratory insufficiency treatment. Long intensive care stay, mechanical ventilation, the use of steroids and sedatives have an impact on the survivors. Previous studies demonstrated that patients admitted to intensive care with non-COVID acute respiratory distress syndrome had a reduction in the quality of life even up to one year after discharge. The aim of this study is to understand if COVID-19 related acute respiratory distress syndrome has a worse impact on the quality of life one year after discharge when compared with non-COVID-19 acute respiratory distress syndrome.
Critically ill patients with severe acute respiratory distress syndrome (ARDS) sometimes require treatment with veno-venous extracorporeal membrane oxygenation (ECMO) to support gas exchange. To prevent clotting of the ECMO circuit, these patients need to be anticoagulated. This protective anticoagulation also leeds to an increased bleeding risk. Most critically ill COVID-19 patients suffer from an ARDS and some require ECMO support. However, the optimal strategy and targets for the anticoagulation of these patients remain uncertain. Studies have shown that COVID-19 is associated with endotheliopathy probably leading to procoagulatory effects. On the other hand, the incidence of bleeding complications associated with this endotheliopathy is not clear and remains to be elucidated. Anticoagulation of COVID-19 patients on ECMO thus poses a challenge for clinicians. The hypothesis of the current project is that COVID-19 patients with ARDS on ECMO exhibit a higher number of bleeding complications compared to historical control patients with non-COVID-19 ARDS requiring ECMO support.
The Lungpacer PROTECT Diaphragm Pacing Therapy System (DPTS) is a temporary, percutaneously-placed, transvenous, phrenic nerve-stimulating device intended to stimulate the diaphragm to preserve and improve inspiratory muscle strength in mechanically ventilated patients. The purpose of the PROTECT DPTS is to improve gas exchange, regional lung ventilation, and hemodynamics, and decrease atelectasis in patients presenting with acute respiratory distress syndrome (ARDS).
The aim of this study is to evaluate the efficacy of dexamethasone in hospitalized adults with COVID-19 pneumonia who do not require supplementary oxygen on admission, but have high risk of developing acute respiratory distress syndrome (ARDS). This is a prospective, multicenter, phase 4, parallel-group, randomized and controlled trial that is open-label to investigators, participants and clinical outcome assessors. Eligible participants include adults (age 18 years or older), diagnosed with SARS-CoV-2 infection, evidence of infiltrates on chest radiography or computerized tomography, peripheral capillary oxygen saturation ≥94% and 22 breaths per minute breathing room air, and high risk of developing ARDS defined by a lactate dehydrogenase higher than 245 U/L, C-Reactive Protein higher than 100 mg/L, and absolute lymphocytes lower than 800 cells/µL. Eligible participants will meet two of the three before analytical criteria associated with severe COVID-19. Patients will provide written informed consent. Exclusion criteria include patients with a history of allergy to dexamethasone, pregnant or lactating women, oral or inhaled corticosteroids treatment within 15 days before randomization, immunosuppressive agent or cytotoxic drug therapy within 30 days before randomization, neutropenia <1000 cells/µL, human immunodeficiency virus infection with CD4 cell counts <500 cells within 90 days after randomization, dementia, chronic liver disease defined by ALT or AST ≥5 times the upper limit of normal, chronic kidney injury defined by a glomerular filtration rate ≤30 ml/min, hemodialysis or peritoneal dialysis, uncontrolled infection, and patients who are already enrolled in another clinical trial. Study participants will be randomized in a 1:1 ratio to receive dexamethasone base 6 mg once daily for seven days or standard of care. The primary endpoint is to prevent of development of moderate ARDS. Based on the Berlin criteria, moderate ARDS is defined by a PaO2/FiO2 ratio >100 mmHg and ≤200 mmHg. Study participants will be randomized in a 1:1 ratio to receive dexamethasone versus standard of care using a randomization platform. Included participants will be hospitalized at the time of randomization. The study will be undertaken at Infanta Leonor-Virgen de la Torre University Hospital, Enfermera Isabel Zendal Emergency Hospital, and Infanta Cristina Hospital, Madrid, Spain.
Covid-19 associated Acute Respiratory Distress Syndrome (ARDS) may present with profound hypoxemia not fully explained with pulmonary infiltrates. Accordingly, how prone positioning improves oxygenation in these patients is not fully known. The investigators conducted a study among patients with severe Covid-19 ARDS receiving prone position for at least 16 hours. End Expiratory Lung Volume (EELV) was measured with Nitrogen wash-in/wash-out technique before (Supine Position 1- SP1), during (Prone Position - PP) and after (Supine Position 2 - SP2) prone positioning.
The data were retrospectively collected during the first and the second wave of epidemic in COVID-19 patients with Severe Acute Respiratory Syndrome Coronavirus 2, at the moment of intensive care unit admission and during the in intensive care unit staying.
Sedation of severe COVID-19 disease are often complicated. We try to find a correlate for this observation by encephalographic studies.
The primary object of this clinical study is to investigate the efficacy and the safety of NOA-001 in patients with ARDS (ARDS caused by Non-COVID-19 or COVID-19).
Novel coronavirus pneumonia (NCP) and acute respiratory distress syndrome (ARDS) are both associated with the prevailing upper respiratory tract infections caused by the RNA-containing SARS-CoV2 virus of the genius Betacoronavirus of the Coronaviridae family. As both the viral infiltration and infection progress, the host immune system response can be one of a rapidly developing fatal cytokine storm. In the ARDS or NCP ensuing progression, the patient often succumbs to the effects of the hyper pro-inflammatory response, hence contributing to the associated increased mortality as a result of the cytokine storm and associated pathogenesis.