Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03897335
Other study ID # Acute Kidney Injury
Secondary ID
Status Recruiting
Phase Phase 3
First received
Last updated
Start date February 7, 2019
Est. completion date February 1, 2024

Study information

Verified date April 2022
Source Le Bonheur Children's Hospital
Contact Lauren Davis
Phone 901-287-4594
Email lauren.davis2@lebonheur.org
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this study is to compare the effects of peri-operative administration of Aminophylline versus Saline placebo in the preservation of renal function and the attenuation of renal injury in pediatric patients undergoing open heart surgery.


Description:

Cardiac palliative/ correction surgeries in pediatric patients involve significant morbidity and mortality risks. Kidney function is frequently affected from cardiac surgery in these children. Studies identify the incidence of acute kidney injury (AKI) to be approximately 54% when defined by serum biomarkers (e.g. serum creatinine) and urine output criteria. The need for renal replacement therapy (RRT) for newborns and infants after cardiac surgery is reported as 2% to 17% in the literature. There are several reported risk factors for the development of AKI in this population. These are the complexities of the underlying heart disease and the surgical procedure, duration of cardiopulmonary bypass, functional single ventricle heart disease, circulatory arrest and low cardiac output syndrome in the post-operative period. AKI can cause worsening fluid overload compromising ventilation and lung function, predisposition to overwhelming infections and cytokine-mediated inflammatory state. The presence of AKI significantly increases the mortality that is associated with cardiac surgery in these very young patients, reported as high as 79% in the literature. There have been several reports suggesting that early intervention with AKI using renal replacement therapy (RRT) may improve patient mortality. Successful prevention strategies for AKI have not been reported for this high-risk population. Adenosine has been demonstrated to regulate renal circulation and metabolism. It is a breakdown product of adenosine triphosphate/adenosine diphosphate (ATP/ADP) metabolism and accumulates in AKI. At baseline, the barely detectable renal parenchymal adenosine levels can increase to 10-100 times following an ischemic insult. These are typical seven trans-membrane spanning domains with a coupled G-protein at the intracellular end. Adenosine receptors are located ubiquitously in many tissues. Adenosine acts as a vasodilator in all other tissues but the renal parenchyma. The interaction of AT-II with adenosine converts adenosine to a vasoconstrictor in renal microvasculature. Adenosine acts on the A1 receptors (A1 R) in the afferent arterioles, causing reduced glomerular blood flow and glomerular filtration rate (GFR), as well as stimulating renin release from the kidney parenchyma. Adenosine plays an important role in generating the vasoconstrictive response in the renal vasculature to hypoxia and ischemia. Early interventions by blocking the actions of adenosine on A1 R may restore glomerular blood flow and recover GFR. The study rationale is that Aminophylline and Theophylline are competitive non-selective inhibitors of adenosine. Therefore, even though aminophylline infusion (iv) has no effect on renal blood flow rate at baseline, it can ameliorate the decrease in renal blood flow rate following adenosine infusion. This property can improve renal function when the main mechanism of insult induces vasoconstriction. Both early and late administration of aminophylline protects renal function after ischemia-reperfusion injury in rats. Aminophylline has also been reported to successfully reverse newborn renal failure, prevent renal failure in perinatal asphyxia, and reverse acute kidney injury secondary to calcineurin induced nephropathy. Both theophylline and aminophylline have been used for prophylaxis of renal impairment during aorto-coronary bypass surgery in adults and the results have not been consistent for either a positive or negative effect. There have been no trials reported on the effect of aminophylline or theophylline to prevent or ameliorate acute kidney injury in children with congenital heart defects going through cardiac surgery. Additionally, we are examining the components of serotonin biosynthesis to determine if these levels can act as markers of acute kidney injury in pediatric patients undergoing open heart surgery.


Recruitment information / eligibility

Status Recruiting
Enrollment 80
Est. completion date February 1, 2024
Est. primary completion date February 1, 2023
Accepts healthy volunteers No
Gender All
Age group N/A to 18 Years
Eligibility Inclusion Criteria: Cohort 1 - All children undergoing open heart surgery for congenital heart defects with or without circulatory arrest - Neonates (<28 days old) and infants (<1 years of age) - Hypoplastic L heart syndrome or its variants. - Coarctation with aortic arch hypoplasia. - Interrupted aortic arch. - TAPVR (Total anomalous pulmonary venous return) - Patients with complex congenital heart defects Cohort 2: - Orthotopic heart transplantation patients. - Patients = 18 years of age - Congenital heart defects - Cardiomyopathy (Dilated/Hypertrophic/Restrictive/Left Ventricular Non-compaction) Exclusion Criteria: - Children under the age of 12 months undergoing bypass for any condition that is not categorized as congenital heart defect - History of seizures - History of significant tachyarrhythmia.

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Aminophylline
Aminophylline pre cardiopulmonary bypass and immediately post cardiopulmonary bypass. The dose will be Aminophylline 5 mg/kg/dose, max 350 mg slow infusion. The infusion rate duration will be standardized to 20 minutes. There will be no other aminophylline treatments for the first post-op five days.
Placebo
The placebo group will not receive any aminophylline treatments for the first post-op five days

Locations

Country Name City State
United States LeBonheur Children's Hospital Memphis Tennessee
United States LeBonheur Children's Hospital Memphis Tennessee

Sponsors (1)

Lead Sponsor Collaborator
Le Bonheur Children's Hospital

Country where clinical trial is conducted

United States, 

References & Publications (47)

1.KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl 2 ; 2012:1-138

11.Gouyon JB, Guignard JP. Glomerular filtration rates in neonates. In Oh w, Guignard JP, Baumgart S (Eds.): Nephrology and Fluid / Electrolyte Physiology, First edn (pp 79-96). Philadelphia: Saunders Elsevier 2008

Aki Y, Tomohiro A, Nishiyama A, Kiyomoto K, Kimura S, Abe Y. Effects of KW-3902, a selective and potent adenosine A1 receptor antagonist, on renal hemodynamics and urine formation in anesthetized dogs. Pharmacology. 1997 Oct;55(4):193-201. — View Citation

Bakr AF. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia--a study in a developing country. Pediatr Nephrol. 2005 Sep;20(9):1249-52. Epub 2005 Jun 10. — View Citation

Bhat MA, Shah ZA, Makhdoomi MS, Mufti MH. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial. J Pediatr. 2006 Aug;149(2):180-4. — View Citation

Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, Jefferies JL. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012 Feb;143(2):368-74. doi: 10.1016/j.jtcvs.2011.06.021. Epub 2011 — View Citation

Boigner H, Brannath W, Hermon M, Stoll E, Burda G, Trittenwein G, Golej J. Predictors of mortality at initiation of peritoneal dialysis in children after cardiac surgery. Ann Thorac Surg. 2004 Jan;77(1):61-5. — View Citation

Bojan M, Gioanni S, Vouhé PR, Journois D, Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012 Aug;82(4):474-81. — View Citation

Chan KL, Ip P, Chiu CS, Cheung YF. Peritoneal dialysis after surgery for congenital heart disease in infants and young children. Ann Thorac Surg. 2003 Nov;76(5):1443-9. — View Citation

Cotter G, Dittrich HC, Weatherley BD, Bloomfield DM, O'Connor CM, Metra M, Massie BM; Protect Steering Committee, Investigators, and Coordinators. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor a — View Citation

Day YJ, Huang L, Ye H, Li L, Linden J, Okusa MD. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol. 2006 Mar 1;176(5):3108-14. — View Citation

Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001 Dec;53(4):527-52. Review. — View Citation

Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC; CKI-201 and CKI-202 Investigators. The effects of KW-3902, an adenosine A1-receptor antagonist,on diuresis and renal function in patients with acute decompensated heart failure and renal impairmen — View Citation

Glover DK, Riou LM, Ruiz M, Sullivan GW, Linden J, Rieger JM, Macdonald TL, Watson DD, Beller GA. Reduction of infarct size and postischemic inflammation from ATL-146e, a highly selective adenosine A2A receptor agonist, in reperfused canine myocardium. Am — View Citation

Gouyon JB, Guignard JP. Functional renal insufficiency: role of adenosine. Biol Neonate. 1988;53(4):237-42. Review. — View Citation

Gouyon JB, Guignard JP. Theophylline prevents the hypoxemia-induced renal hemodynamic changes in rabbits. Kidney Int. 1988 Jun;33(6):1078-83. — View Citation

Hall JE, Granger JP, Hester RL. Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am J Physiol. 1985 Mar;248(3 Pt 2):F340-6. — View Citation

Hansen PB, Schnermann J. Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol. 2003 Oct;285(4):F590-9. Review. — View Citation

Jenik AG, Ceriani Cernadas JM, Gorenstein A, Ramirez JA, Vain N, Armadans M, Ferraris JR. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia. Pediatri — View Citation

Krämer BK, Preuner J, Ebenburger A, Kaiser M, Bergner U, Eilles C, Kammerl MC, Riegger GA, Birnbaum DE. Lack of renoprotective effect of theophylline during aortocoronary bypass surgery. Nephrol Dial Transplant. 2002 May;17(5):910-5. — View Citation

Lee HT, Emala CW. Systemic adenosine given after ischemia protects renal function via A(2a) adenosine receptor activation. Am J Kidney Dis. 2001 Sep;38(3):610-8. — View Citation

Linden J and Jacobson KA. Molecular biology and pharmacology of adenosine receptors. Cardiovascular Biology of Purines, 1-20 (Eds Burnstock G et al.) Dordrecht: Kluwer Academic Publishers.

Mahaldar AR, Sampathkumar K, Raghuram AR, Kumar S, Ramakrishnan M, Mahaldar DA. Risk prediction of acute kidney injury in cardiac surgery and prevention using aminophylline. Indian J Nephrol. 2012 May;22(3):179-83. doi: 10.4103/0971-4065.98752. — View Citation

Massie BM, O'Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Weatherley BD, Cleland JG, Givertz MM, Voors A, DeLucca P, Mansoor GA, Salerno CM, Bloomfield DM, Dittrich HC; PROTECT Investigators and Committees. Rolofylline, an adenosine A1-recepto — View Citation

McLaughlin GE, Abitbol CL. Reversal of oliguric tacrolimus nephrotoxicity in children. Nephrol Dial Transplant. 2005 Jul;20(7):1471-5. Epub 2005 Apr 19. — View Citation

Morecroft I, Dempsie Y, Bader M, Walther DJ, Kotnik K, Loughlin L, Nilsen M, MacLean MR. Effect of tryptophan hydroxylase 1 deficiency on the development of hypoxia-induced pulmonary hypertension. Hypertension. 2007 Jan;49(1):232-6. Epub 2006 Nov 27. — View Citation

Navar LG, Inscho EW, Majid SA, Imig JD, Harrison-Bernard LM, Mitchell KD. Paracrine regulation of the renal microcirculation. Physiol Rev. 1996 Apr;76(2):425-536. Review. — View Citation

Ng GY, Baker EH, Farrer KF. Aminophylline as an adjunct diuretic for neonates--a case series. Pediatr Nephrol. 2005 Feb;20(2):220-2. Epub 2004 Dec 4. — View Citation

Nishiyama A, Inscho EW, Navar LG. Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol. 2001 Mar;280(3):F406-14. — View Citation

Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel diseas — View Citation

Okusa MD, Linden J, Huang L, Rosin DL, Smith DF, Sullivan G. Enhanced protection from renal ischemia-reperfusion [correction of ischemia:reperfusion] injury with A(2A)-adenosine receptor activation and PDE 4 inhibition. Kidney Int. 2001 Jun;59(6):2114-25. — View Citation

Okusa MD, Linden J, Macdonald T, Huang L. Selective A2A adenosine receptor activation reduces ischemia-reperfusion injury in rat kidney. Am J Physiol. 1999 Sep;277(3):F404-12. doi: 10.1152/ajprenal.1999.277.3.F404. — View Citation

Pawelczyk T, Grden M, Rzepko R, Sakowicz M, Szutowicz A. Region-specific alterations of adenosine receptors expression level in kidney of diabetic rat. Am J Pathol. 2005 Aug;167(2):315-25. — View Citation

Pedersen KR, Hjortdal VE, Christensen S, Pedersen J, Hjortholm K, Larsen SH, Povlsen JV. Clinical outcome in children with acute renal failure treated with peritoneal dialysis after surgery for congenital heart disease. Kidney Int Suppl. 2008 Apr;(108):S8 — View Citation

Pedersen KR, Povlsen JV, Christensen S, Pedersen J, Hjortholm K, Larsen SH, Hjortdal VE. Risk factors for acute renal failure requiring dialysis after surgery for congenital heart disease in children. Acta Anaesthesiol Scand. 2007 Nov;51(10):1344-9. — View Citation

Rabb H. The promise of immune cell therapy for acute kidney injury. J Clin Invest. 2012 Nov;122(11):3852-4. doi: 10.1172/JCI66455. Epub 2012 Oct 24. — View Citation

Reece TB, Davis JD, Okonkwo DO, Maxey TS, Ellman PI, Li X, Linden J, Tribble CG, Kron IL, Kern JA. Adenosine A2A analogue reduces long-term neurologic injury after blunt spinal trauma. J Surg Res. 2004 Sep;121(1):130-4. — View Citation

Rigden SP, Barratt TM, Dillon MJ, De Leval M, Stark J. Acute renal failure complicating cardiopulmonary bypass surgery. Arch Dis Child. 1982 Jun;57(6):425-30. — View Citation

Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008 Nov 4;52(19):1527-39. doi: 10.1016/j.jacc.2008.07.051. Review. — View Citation

Ross SD, Tribble CG, Linden J, Gangemi JJ, Lanpher BC, Wang AY, Kron IL. Selective adenosine-A2A activation reduces lung reperfusion injury following transplantation. J Heart Lung Transplant. 1999 Oct;18(10):994-1002. — View Citation

Silldorff EP, Pallone TL. Adenosine signaling in outer medullary descending vasa recta. Am J Physiol Regul Integr Comp Physiol. 2001 Mar;280(3):R854-61. — View Citation

Sole MJ, Madapallimattam A, Baines AD. An active pathway for serotonin synthesis by renal proximal tubules. Kidney Int. 1986 Mar;29(3):689-94. — View Citation

Sorof JM, Stromberg D, Brewer ED, Feltes TF, Fraser CD Jr. Early initiation of peritoneal dialysis after surgical repair of congenital heart disease. Pediatr Nephrol. 1999 Oct;13(8):641-5. — View Citation

Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev. 2006 Jul;86(3):901-40. Review. — View Citation

Vitzthum H, Weiss B, Bachleitner W, Krämer BK, Kurtz A. Gene expression of adenosine receptors along the nephron. Kidney Int. 2004 Apr;65(4):1180-90. — View Citation

Voors AA, Dittrich HC, Massie BM, DeLucca P, Mansoor GA, Metra M, Cotter G, Weatherley BD, Ponikowski P, Teerlink JR, Cleland JG, O'Connor CM, Givertz MM. Effects of the adenosine A1 receptor antagonist rolofylline on renal function in patients with acute — View Citation

Yao K, Ina Y, Nagashima K, Ohno T, Karasawa A. Effect of the selective adenosine A1-receptor antagonist KW-3902 on lipopolysaccharide-induced reductions in urine volume and renal blood flow in anesthetized dogs. Jpn J Pharmacol. 2000 Nov;84(3):310-5. — View Citation

* Note: There are 47 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Concentration of Delta urinary neutrophil gelatinase-associated lipocalin (NGAL) 1 Delta urinary NGAL at 6 hours post cardiopulmonary (CPB) and Delta plasma NGAL at 2 hours post CPB. at 2 hours post CPB.
Other Time to extubation (hours) Time to extubation (hours) number of hours post surgery during hospitalization, up to 8 days
Other Time to chest closure (hours) Time to chest closure (hours) from start time of incision to chest closure during procedure during hospitalization, up to 3 days
Other Time to discharge from cardiovascular intensive care unit (CVICU) (days) Time to discharge from CVICU (days) during hospitalization, approximate 5 days
Other Duration of hospital stay (Days). Duration of hospital stay (Days). during hospitalization, approximate 8 days
Other Dialysis requirement (yes/no) Dialysis requirement (yes/no) during hospitalization, approximate 5 days
Other Time to return to preoperative weight. Time to return to preoperative weight. during hospitalization, approximate 8 days
Other Inotropic score Inotropic score Calculation of Inotropic score (IS) and Vasoactive inotropic score (VIS). IS(a) = dopamine dose (lg/kg/min) ? dobutamine dose (lg/kg/min) ? 100 9 epinephrine dose (lg/kg/min) VIS(b) = IS ? 10 9 milrinone dose (lg/kg/ min) ? 10,000 9 vasopressin dose (U/kg/ min) ? 100 9 norepinephrine dose (lg/kg/min) IS inotrope score, VIS vasoactive-inotropic score at 7 days post operative
Other Peritoneal dialysis catheter output. Peritoneal dialysis catheter output through study completion during hospitalization, up to 8 days
Other Transfusion requirements intraoperatively and postoperatively Transfusion requirements intraoperatively and postoperatively through study completion during hospitalization, up to 8 days
Other Inotropic score Inotropic score Calculation of Inotropic score (IS) and Vasoactive inotropic score (VIS). IS(a) = dopamine dose (lg/kg/min) ? dobutamine dose (lg/kg/min) ? 100 9 epinephrine dose (lg/kg/min) VIS(b) = IS ? 10 9 milrinone dose (lg/kg/ min) ? 10,000 9 vasopressin dose (U/kg/ min) ? 100 9 norepinephrine dose (lg/kg/min) IS inotrope score, VIS vasoactive-inotropic score at 5 days post operative
Primary Acute kidney injury state II/III by AKIN criteria Acute kidney injury state II/III by AKIN criteria At 48 hours post-operative
Secondary Urine output during post op Urine output during post op first 12 hours post op
Secondary Urine output during post op Urine output during post op daily until 3 days post op
Secondary Concentration of Delta serum cystatin C Delta serum cystatin C 24 hours post CPB
Secondary Acute kidney injury stage Acute kidney injury stage Pediatric modified Acute Kidney Injury Network criteria (pAKIN) AKI Stage I-<0.5mL (milliliter)/kg/hour for 8 hours AKI Stage II-<0.5mL/kg/hour for 16 hours AKI Stage III-<0.3mL/kg/hour for 24 hours OR Anuria for 16 hours
Using serum creatinine and AKIN criteria
max point within post CPB 72 hours
See also
  Status Clinical Trial Phase
Recruiting NCT05538351 - A Study to Support the Development of the Enhanced Fluid Assessment Tool for Patients With Acute Kidney Injury
Recruiting NCT06027788 - CTSN Embolic Protection Trial N/A
Completed NCT03938038 - Guidance of Ultrasound in Intensive Care to Direct Euvolemia N/A
Recruiting NCT05805709 - A Patient-centered Trial of a Process-of-care Intervention in Hospitalized AKI Patients: the COPE-AKI Trial N/A
Recruiting NCT05318196 - Molecular Prediction of Development, Progression or Complications of Kidney, Immune or Transplantation-related Diseases
Recruiting NCT05897840 - Continuous Central Venous Oxygen Saturation Measurement as a Tool to Predict Hemodynamic Instability Related to Renal Replacement Therapy in Critically Ill Patients N/A
Recruiting NCT04986137 - Fractional Excretion of Urea for the Differential Diagnosis of Acute Kidney Injury in Cirrhosis
Terminated NCT04293744 - Acute Kidney Injury After Cardiac Surgery N/A
Completed NCT04095143 - Ultrasound Markers of Organ Congestion in Severe Acute Kidney Injury
Not yet recruiting NCT06026592 - Detection of Plasma DNA of Renal Origin in Kidney Transplant Patients
Not yet recruiting NCT06064305 - Transcriptional and Proteomic Analysis of Acute Kidney Injury
Terminated NCT03438877 - Intensive Versus Regular Dosage For PD In AKI. N/A
Terminated NCT03305549 - Recovery After Dialysis-Requiring Acute Kidney Injury N/A
Completed NCT05990660 - Renal Assist Device (RAD) for Patients With Renal Insufficiency Undergoing Cardiac Surgery N/A
Completed NCT04062994 - A Clinical Decision Support Trial to Reduce Intraoperative Hypotension
Terminated NCT02860130 - Clinical Evaluation of Use of Prismocitrate 18 in Patients Undergoing Acute Continuous Renal Replacement Therapy (CRRT) Phase 3
Completed NCT06000098 - Consol Time and Acute Kidney Injury in Robotic-assisted Prostatectomy
Not yet recruiting NCT05548725 - Relation Between Acute Kidney Injury and Mineral Bone Disease
Completed NCT02665377 - Prevention of Akute Kidney Injury, Hearttransplant, ANP Phase 3
Terminated NCT03539861 - Immunomodulatory Biomimetic Device to Treat Myocardial Stunning in End-stage Renal Disease Patients N/A