Clinical Trials Logo

Clinical Trial Summary

The outcome of brain injury (physical or stroke) may be related to a brain electrical phenomenon known as Cortical Spreading Depression (CSD). This is a brief cessation of function in a local region of brain tissue. It has been hypothesized that CSD may occur after brain injury and may expand the damage to adjacent brain areas. Our aim is to detect CSD by means of intracranial electrodes in patients with brain injuries and asses how these events alter the outcome of the patients.


Clinical Trial Description

Cortical spreading depression (CSD) is a wave of mass neuronal firing and neuronal and glial depolarisation which propagates through grey matter in the central nervous system in response to a pathologic stimulus, at a rate of between 1 and 5 mm per minute. First described by Leão in 1944 as a sudden depression of ECoG amplitude spreading across the cortex of the rabbit (Leao, A. A. P. 1944), CSD can be elicited in experimental animals by chemical, electrical, and mechanical stimuli, with varying degrees of ease. CSD provoked in healthy, normally perfused neural tissue does not induce persistent metabolic stress or cellular damage, and indeed such induction of CSD in animal experiments may confer protection against the adverse effects of a subsequent ischaemic insult (Kobayashi, S. et al. 1995).

In animal models of focal cerebral ischaemia, usually induced by occlusion of the middle cerebral artery, a spontaneous phenomenon occurs around the periphery of the core territory, with electrophysiological features essentially identical with CSD, and similar capacity to propagate across cerebral cortex. Designated "peri-infarct depolarisation" (PID), this event is associated with infarct expansion, or recruitment of at-risk cortical territory into the expanding core, and has been shown capable of causing this expansion, in the absence of therapeutic intervention. Indeed it has been hypothesized that glutamate release may be involved in PID generation, and that excitotoxicity may accomplish detrimental effects via this route (Hossmann, K. A. 1994), (Obrenovitch, T. P. and Urenjak, J. 1997). Some experimental neuroprotection treatments for stroke act to decrease the incidence of PID (Iijima, T. et al. 1992;Chen, Q. et al. 1993;Busch, E. et al. 1996).

In traumatic and ischaemic (especially in middle cerebral artery occlusion and aneurysmal subarachnoid haemorrhage) brain injury in humans, a phase of delayed deterioration often associated with severe and refractory brain swelling develops between 2 and 5 days after the initial ictus, and is associated with poor or fatal outcome. The cause and mechanism of this deterioration remain poorly understood, and the possibility exists that CSD/PID events might contribute to deterioration.

To date, CSD or PID have been reported in only ten human subjects in two papers (Mayevsky, A. et al. 1996; Strong, A. J. et al. 2002). Strong et al. reported that transient ECoG suppressions suggestive of depolarisations are common - but by no means universal - after brain injury in humans. Sub-dural ECoG electrode strips were placed in 14 patients who had undergone craniotomy for trauma or intracranial hemorrhage; monitoring was for up to 60 h following the injury. Five of these patients (36%) showed patterns of ECoG depression consistent with PID/CSD in brain regions adjacent to the primary injury. ;


Study Design

Observational Model: Defined Population, Time Perspective: Longitudinal


Related Conditions & MeSH terms


NCT number NCT00258505
Study type Observational
Source Soroka University Medical Center
Contact Anthony Strong, Prof.
Email Anthony.strong@kcl.ac.uk
Status Not yet recruiting
Phase N/A
Completion date September 2007

See also
  Status Clinical Trial Phase
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Completed NCT04356963 - Adjunct VR Pain Management in Acute Brain Injury N/A
Completed NCT03418129 - Neuromodulatory Treatments for Pain Management in TBI N/A
Terminated NCT03698747 - Myelin Imaging in Concussed High School Football Players
Recruiting NCT05130658 - Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training N/A
Recruiting NCT04560946 - Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI N/A
Completed NCT05160194 - Gaining Real-Life Skills Over the Web N/A
Recruiting NCT02059941 - Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04465019 - Exoskeleton Rehabilitation on TBI
Recruiting NCT04530955 - Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS) N/A
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Suspended NCT04244058 - Changes in Glutamatergic Neurotransmission of Severe TBI Patients Early Phase 1
Completed NCT03307070 - Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury N/A
Recruiting NCT04274777 - The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
Withdrawn NCT05062148 - Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery N/A
Withdrawn NCT04199130 - Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI N/A
Withdrawn NCT03626727 - Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia Early Phase 1