Clinical Trials Logo

Clinical Trial Summary

Chronic hemiparetic stroke is associated changes in body composition, skeletal muscle and cardiometabolic health; specific changes include paretic limb muscular atrophy, increased intramuscular fat deposition, elevated prevalence of impaired glucose tolerance and type 2 diabetes. This randomized intervention study compares a 6 month task oriented exercise programs versus control with both groups receiving best medical stroke care according to American Stroke Association "Get with the Guidelines". The hypothesis is that is 6 months of task-oriented exercise initiated early across the sub-acute period of stroke can prevent or ameliorate the natural course of these body composition, skeletal muscle and cardiometabolic health changes.


Clinical Trial Description

Stroke leads to profound cardiovascular deconditioning and secondary abnormalities in paretic skeletal muscle that worsen cardiovascular health. Conventional rehabilitation focuses on restoration of daily function, without an adequate exercise stimulus to address deconditioning or the muscle abnormalities that may propagate insulin resistance (IR) to worsen risk for type 2 diabetes mellitus (T2DM) and recurrent stroke. By the time individuals reach chronic stroke (>6 months), we report hemiparetic body composition abnormalities including paretic leg muscular atrophy, increased intramuscular area fat, and a major shift to fast myosin heavy chain (MHC). All of these factors promote IR, which has been linked to reduced muscle protein synthesis in aging that may be reversible with exercise. We also find elevated tumor necrosis factor alpha (TNFα) in paretic leg muscle, suggesting that inflammation may affect protein synthesis and breakdown, similar to sarcopenia in aging. Yet, no prior studies have considered stroke as a catabolic syndrome modifiable by early exercise to improve muscle and cardiometabolic health.

Aim #1. Paretic (P) and non-paretic (NP) leg mixed muscle protein synthesis and breakdown in the fed and fasted state, TNFα expression, thigh muscle volume and strength.

Hypothesis 1: Paretic leg has reduced muscle protein synthesis and increased breakdown compared to non-paretic leg; TEXT will increase mixed muscle protein synthesis and reduce breakdown to increase muscle volume and strength by the mechanism(s) of reducing inflammation in the paretic leg, compared to controls.

Aim # 2. Glucose tolerance, fitness, and muscle phenotype. Hypothesis 2: TEXT will improve fitness levels, insulin and glucose response to oral glucose challenge, and increase paretic leg slow twitch (slow MHC) muscle molecular phenotype.

This randomized study investigates the hypothesis that in African-Jamaican adults with recent hemiparetic stroke, 6 months of TEXT across the sub-acute and into the chronic phase of stroke will improve paretic leg muscle and cardiometabolic health, compared to controls receiving best medical care.

Phase 1 consists of recruitment and screening of individuals with mild to moderate hemiparetic stroke from UWI Accident and Emergency Room and Neurology Stroke Clinics. Phase 2: Subjects with hemiparetic gait ≤ 8 weeks post-stroke who are not wheelchair bound or bed are approached for informed consent, medical, neurologic, blood tests, and treadmill (TM) exercise tests to determine study eligibility. Phase 3 baseline testing includes measures of fitness, oral glucose tolerance test (OGTT), body composition, bilateral vastus lateralis muscle biopsies, stable isotope measures of protein synthesis and breakdown. Phase 4: Eligible subjects are randomized to 6 months 3x/week TEXT or control group with best medical care alone that includes American Stroke Association (ASA) physical activity guideline recommendations for walking 4x/week. Randomization is stratified based on glucose tolerance (normal vs. abnormal) and gait deficit severity. Subjects have limited 3 month testing of fitness levels (VO2 peak), body composition, fasting glucose and insulin levels to document the natural history (controls) and temporal profile of exercise-mediated adaptations (TEXT) as they transition from the sub-acute into chronic phase of stroke. Phase 5 is 6-month post-intervention testing. ;


Study Design

Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01392391
Study type Interventional
Source Baltimore VA Medical Center
Contact Richard F Macko, MD
Phone 410-605-7063
Email rmacko@grecc.umaryland.edu
Status Recruiting
Phase Phase 2
Start date July 2011
Completion date April 2018

See also
  Status Clinical Trial Phase
Recruiting NCT04043052 - Mobile Technologies and Post-stroke Depression N/A
Completed NCT04034069 - Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial N/A
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Suspended NCT03869138 - Alternative Therapies for Improving Physical Function in Individuals With Stroke N/A
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Completed NCT00391378 - Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS) N/A
Recruiting NCT06204744 - Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial N/A
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Enrolling by invitation NCT04535479 - Dry Needling for Spasticity in Stroke N/A
Completed NCT03985761 - Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke N/A
Recruiting NCT00859885 - International PFO Consortium N/A
Recruiting NCT06034119 - Effects of Voluntary Adjustments During Walking in Participants Post-stroke N/A
Completed NCT03622411 - Tablet-based Aphasia Therapy in the Chronic Phase N/A
Completed NCT01662960 - Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke N/A
Recruiting NCT05854485 - Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke N/A
Active, not recruiting NCT05520528 - Impact of Group Participation on Adults With Aphasia N/A
Active, not recruiting NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT05805748 - Serious Game Therapy in Neglect Patients N/A
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Recruiting NCT05621980 - Finger Movement Training After Stroke N/A