Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04002739
Other study ID # 2589
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date June 15, 2019
Est. completion date December 15, 2019

Study information

Verified date August 2019
Source Fondazione Policlinico Universitario Agostino Gemelli IRCCS
Contact Pier-Valerio Mari, MD
Phone (+39) 3313881904
Email piervalerio.mari@gmail.com
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Obstructive Sleep Apnea (OSA) is a well-known disorder of upper airways collapse during sleep time leading to oxygen desaturation and sleep fragmentation. Despite being increasingly recognized as cardiovascular risk, the effect of OSA on clinical outcomes after Acute Coronary Syndrome (ACS) is not fully defined. Also, OSA syndrome is highly prevalent in ACS and may be related to the deterioration of cardiac function resulting in worsening of the severity of sleep apnea or the intermittent hypoxia could be cardio-protective via the ischemic preconditioning event. Serial sleep studies have shown the progressive reduction of the Apnea / Hypopnea Index (AHI) from the admission in Coronary Care Unit (CCU) to 6 weeks, 12 weeks and 6-month follow up, making necessary to re-assess the severity of OSA after discharge. Therefore, further research in this field is necessary to screen and predict those ACS patients who may experience a change in their AHI index over time.


Description:

Obstructive Sleep Apnea (OSA) is a well-known disorder of upper airways collapse during sleep time leading to oxygen desaturation, sleep fragmentation, tissue suffering and hypercapnia. The repeated airways collapse leads to a fall of blood saturation levels during sleep time and it is linked to daytime sleepiness, road traffic accidents, cognitive deficits, depression, myocardial infarction, pulmonary hypertension and stroke.

Despite being increasingly recognized as a major cardiovascular risk, the effect of OSA on clinical outcomes after Coronary Artery Disease (CAD) is not fully defined. The presentation of Acute Coronary Syndrome (ACS) can be unstable angina, non-ST Elevation Myocardial Infarction (NSTEMI) or ST-Elevation Myocardial Infarction (STEMI). Sleep apnea prevalence in the context of acute coronary syndromes (ACS) is sizeable, varying from 36.9%-82% when polysomnography is executed briefly after admission in Cardiovascular Care Unit (CCU). The high prevalence of OSA in ACS may be related to the deterioration of cardiac function resulting in worsening of the severity of sleep apnea. In converse, OSA has also been proposed as a protective factor in CAD. The intermittent hypoxia related to OSA could have a cardio-protective role during acute ACS via the phenomenon of "ischemic preconditioning", showing that in acute MI patients higher AHI was associated with lower peak troponin-T levels in partially and fully adjusted models.

Furthermore, the improvement of cardiac outcomes at the follow-up post-discharge seems to positively influence the severity of OSA. In particular, serial sleep studies have interestingly shown a progressive reduction of the AHI at 6 weeks, 12 weeks and 6-month follow up, making necessary to re-assess the severity of OSA after discharge. Therefore, further research in this field is necessary to screen and predict those ACS patients with a diagnosis of OSA made at admission in CCU who may experience a change in their AHI index over time, in order to identify those with a potential unfavourable prognosis.


Recruitment information / eligibility

Status Recruiting
Enrollment 50
Est. completion date December 15, 2019
Est. primary completion date September 15, 2019
Accepts healthy volunteers No
Gender All
Age group 18 Years to 85 Years
Eligibility Inclusion Criteria:

- Subjects with a diagnosis of ACS (STEMI or NSTEMI) admitted to CCU of our institution within 72 hours from Myocardial Infarct (MI)

- Age between 18 and 85 years old

Exclusion Criteria:

- Previous diagnosis of OSA or ongoing CPAP treatment

- Chronic/Home Oxygen therapy

- Cardiogenic shock

- Heart failure exacerbation

- use of mechanical ventilation

- Active use of benzodiazepines

- Pregnancy or breastfeeding

- Unable to sign the informed consent

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
Polygraphy
Patients will perform polygraphy during the CCU stay (baseline) and, if found to have a diagnosis of Obstructive Sleep Apnea (OSA) syndrome, will complete the study with a follow-up visit at 90-day (follow-up). Diagnosis of OSA syndrome will require an Apnea / Hypopnea Index (AHI) more than 5 events per hour.

Locations

Country Name City State
Italy Fondazione Policlinico Universitario Agostino Gemelli IRCCS Roma

Sponsors (1)

Lead Sponsor Collaborator
Fondazione Policlinico Universitario Agostino Gemelli IRCCS

Country where clinical trial is conducted

Italy, 

Outcome

Type Measure Description Time frame Safety issue
Primary Evolution of Obstructive Sleep Apnea severity in Acute Coronary Syndrome Change of Obstructive Sleep Apnea (OSA) severity from baseline to 90 days in patients affected by an Acute Coronary Syndrome (ACS). Within 72 hours from admission, patients will perform a polygraphy and the Apnea / Hypopnea Index (AHI) will be determined. OSA syndrome is defined by AHI more than 5.0 per hour and can be mild (AHI between 5.0 and 15), moderate (AHI between 15.0 and 30.0) or severe (AHI more than 30.0).
When a diagnosis of OSA is confirmed, the patient will have a follow up visit with a new polygraphy and AHI will be defined again. Patients are not going to receive any treatment for the sleep-disorder breathing between baseline and 90-day. The difference between AHI baseline and AHI of the follow-up will define the evolution of OSA severity and will show an improved, stable or worsened sleep-disorder.
Baseline, 90 days
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - Coronary Culprit vessel as a 90-day predictor of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography. The primary statistic of interest will be the effect size. Baseline
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - Echocardiography Ejection fraction (EF) and Systolic Pulmonary Artery Pressure (SPAP) as a 90-day predictors of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography. The primary statistic of interest will be the effect size. Baseline, 90 days
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - EKG Holter Arrhythmias, mean heart rate, SDNN, r-MSSD, pNN50%, Mean Log LF/HF as a 90-day predictors of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography. The primary statistic of interest will be the effect size. Baseline
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - Bioelectrical impedance Resistance and reactance as a 90-day predictors of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography. The primary statistic of interest will be the effect size. Baseline, 90 days
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - ESS Epworth Sleepiness Scale (ESS) as a 90-day predictor of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography. The total score ranges from 0 to 24. Respondents are asked to rate, on a 4-point scale (0-1-2-3), their usual chances of dozing off or falling asleep while engaged in eight different activities. The primary statistic of interest will be the effect size. Baseline, 90 days
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - STOP-BANG STOP-BANG as a 90-day predictor of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography. The test is a baseline screening evaluation of Obstructive Sleep Apnea (OSA) diagnosis. A score <3 is not predictive of OSA while a final result =3 is suggestive of OSA. The primary statistic of interest will be the effect size. Baseline, 90 days
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - Mallampati Score Mallampati Score as a 90-day predictor of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography.
It is a baseline evaluation of the back of a patient's throat by asking the patient to open the mouth and extend the tongue. The anatomy of the oral cavity is visualized; specifically, the assessor notes whether the base of the uvula, faucial pillars and soft palate are visible.
A Mallampati Score =2 is not predictive of OSA while a final result <3 is suggestive of OSA.
The primary statistic of interest will be the effect size.
Baseline
Secondary Predictors of spontaneous reduction of Obstructive Sleep Apnea severity - Serological domain Blood samples result such as CK, Creatin kinase, Glucose, Cholesterol, nt-proBNP, CRP, Creatinin as a 90-day predictor of spontaneous reduction of at least 15.0 events per hour of Apnea / Hypopnea Index (AHI) from baseline evaluation with polysomnography. Baseline
Secondary Prevalence of Obstructive Sleep Apnea (OSA) Prevalence expressed as the number of events per hour of the sleep apneas due to obstructive cause in patients with a diagnosis of Obstructive Sleep Apnea (OSA) Syndrome assessed with polysomnography. Obstructive Sleep Apnea will be defined as an Obstructive Apnea Index per hour more than 5.0/h in polysomnography. Baseline, 90 days
Secondary Evolution of Obstructive Sleep Apnea Syndrome The change of the Obstructive Apnea Index (expressed as the number of events per hour) from the baseline to the 90-day evaluation. Baseline, 90 days
Secondary Prevalence of Central Sleep Apnea (CSA) Prevalence expressed as the number of events per hour of the sleep apneas due to central cause in patients with a diagnosis of Obstructive Sleep Apnea (OSA) Syndrome assessed with polysomnography. Central Sleep Apnea will be defined as a Central Apnea Index per hour more than 5.0/h in polysomnography. Baseline, 90 days
Secondary Evolution of Central Sleep Apnea (CSA) The change of the Central Apnea Index (expressed as the number of events per hour) from the baseline to the 90-day evaluation. Baseline, 90 days
Secondary Culprit vessel Evaluate the baseline prevalence of the culprit vessel responsible for Acute Coronary Syndrome (ACS). Culprit's vessels are one or more of the following:
Left Anterior Descending Artery
Circumflex artery
Right Coronary Artery
Baseline
Secondary Blood samples characteristics Evaluate the baseline prevalence and the potential correlation in acute coronary syndrome (ACS) with obstructive sleep apnea (OSA) of serological biomarkers such as: Troponins, creatinkinase, Creatinin, nt-proBNP, C reactive protein, Glucose, Cholesterol. Baseline
Secondary Bioelectrical impedance characteristics Evaluate the baseline prevalence and the changing after 90 days in acute coronary syndrome (ACS) with obstructive sleep apnea (OSA) of bioelectrical impedance, in particular, reactance and impedance. Baseline, 90 days
Secondary Evaluation of Ejection Fraction Ejection fraction (EF) is a measurement made by echocardiography and expressed as a percentage that describes how much blood the left ventricle pumps out with each contraction. Evaluation of EF will be performed in baseline and after 90 days with echocardiography.
The EF is classified as:
EF=55%: Normal EF 40%
Baseline, 90 days
Secondary Evaluation of Systolic Pulmonary Artery Pressure (SPAP) The Systolic Pulmonary Artery Pressure (SPAP) is an echocardiographic value expressed as mercury millimetres (mmHg) that describes the likelihood of the presence of Pulmonary Hypertension (PH). Evaluation of Systolic Pulmonary Artery Pressure (SPAP) will be performed in baseline and after 90 days with echocardiography.
The SPAP is classified as:
SPAP=35 mmHg: Normal 35mmHg
Baseline, 90 days
Secondary Evolution of Ejection Fraction Ejection fraction (EF) is a measurement made by echocardiography and expressed as a percentage that describes how much blood the left ventricle pumps out with each contraction. The difference from baseline to 90 days will be calculated. The minimal important difference is defined as a change of at least 8% of the EF baseline value. Baseline, 90 days
Secondary Evolution of Systolic Pulmonary Artery Pressure (SPAP) The Systolic Pulmonary Artery Pressure (SPAP) is an echocardiographic value expressed as mercury millimetres (mmHg) that describes the likelihood of the presence of Pulmonary Hypertension (PH). The difference from baseline to 90 days will be calculated. The minimal important difference is defined as a change of at least 5mmHg from the SPAP baseline value. Baseline, 90 days
Secondary Polysomnographic characteristics Within 72 hours from admission in Coronary Care Unit (CCU), patients will perform a polygraphy and the Apnea / Hypopnea Index (AHI) will be determined. OSA syndrome is defined by AHI more than 5.0 per hour and can be mild (AHI between 5.0 and 15), moderate (AHI between 15.0 and 30.0) or severe (AHI more than 30.0). When a diagnosis of OSA is confirmed, the patient will have a follow up visit with a new polygraphy and AHI will be defined again. Baseline, 90 days
Secondary Evaluation of daytime sleepiness Assessment of sleepiness status using the questionnaire "Epworth Sleepiness Score" (ESS). The total score ranges from 0 to 24. Respondents are asked to rate, on a 4-point scale (0-1-2-3), their usual chances of dozing off or falling asleep while engaged in eight different activities. A result in ESS score more than 10 is suggestive for daytime sleepiness. Baseline, 90 days
Secondary Evolution of daytime sleepiness Change from baseline to 90 days of the questionnaire "Epworth Sleepiness Score" (ESS). The total score ranges from 0 to 24. Respondents are asked to rate, on a 4-point scale (0-1-2-3), their usual chances of dozing off or falling asleep while engaged in eight different activities. The difference from baseline to 90 days will be calculated. The minimal important difference is defined as a reduction of at least 2 points of the baseline value. Baseline, 90 days
Secondary Baseline screening of Obstructive Sleep Apnea Baseline screening evaluation of Obstructive Sleep Apnea (OSA) diagnosis using the validated questionnaire "STOP-BANG". A score <3 is not predictive of OSA while a final result =3 is suggestive of OSA. Baseline, 90 days
Secondary Baseline prediction of Obstructive Sleep Apnea Baseline evaluation of the back of a patient's throat by asking the patient to open the mouth and extend the tongue. The anatomy of the oral cavity is visualized; specifically, the assessor notes whether the base of the uvula, faucial pillars and soft palate are visible. Four classes can be distinguished:
Class I: Soft palate, uvula, fauces, pillars visible. Class II: Soft palate, major part of uvula, fauces visible. Class III: Soft palate, base of uvula visible. Class IV: Only hard palate visible. A Mallampati Score =2 is not predictive of OSA while a final result <3 is suggestive of OSA.
Baseline
Secondary 24 hours-EKG Holter baseline characteristics Evaluate the baseline prevalence and the potential correlation in acute coronary syndrome (ACS) with obstructive sleep apnea (OSA) of 24 hours EKG Holter using values such as: arrhythmias, mean heart rate, SDNN, r-MSSD, pNN50%, Mean Log LF/HF. Baseline
See also
  Status Clinical Trial Phase
Completed NCT04044495 - Sleep, Rhythms and Risk of Alzheimer's Disease N/A
Recruiting NCT06079853 - Nurse Suicide: Physiologic Sleep Health Promotion Trial N/A
Completed NCT05017974 - Research on Improving Sleep During Pregnancy N/A
Recruiting NCT05206747 - Ottawa Sunglasses at Night for Mania Study N/A
Enrolling by invitation NCT04253054 - Chinese Multi-provincial Cohort Study-Beijing Project
Completed NCT04513743 - Ultra Long-Term Sleep Monitoring Using UNEEG™ Medical 24/7 EEG™ SubQ N/A
Completed NCT03251274 - Bath Machine on Sleep Quality in Nursing Home N/A
Completed NCT04102345 - Lavender vs Zolpidem Sleep Quality During Diagnostic PSG Early Phase 1
Completed NCT03725943 - Comparison of Dreem to Clinical PSG for Sleep Monitoring in Healthy Adults N/A
Active, not recruiting NCT05062161 - Sleep Duration and Blood Pressure During Sleep N/A
Completed NCT04562181 - Consistency Evaluation of the qCON, qNOX Indices and Bispectral Index N/A
Completed NCT05576844 - Ai Youmian (Love Better Sleep) for People Living With HIV N/A
Completed NCT05102565 - A Dyadic Telehealth Program for Alzheimer's Patients/Caregivers N/A
Completed NCT04688099 - Synovial Fluid Sleep Study
Recruiting NCT04171245 - Prescribing Laughter for Sleep and Wellbeing in UAE University Students N/A
Completed NCT03758768 - The Effects of a Blue Monochromatic Light Intervention on Evening-type Individuals' Sleep and Circadian Rhythms N/A
Completed NCT03163498 - Evaluation of Sleep Pattern and Mood Profile in Hypertensive Patients
Completed NCT04093271 - Investigating the Efficacy of Rest-ZZZ Formula in Healthy Participants With Difficulty Falling Asleep or Staying a Sleep Phase 1
Completed NCT03673397 - The Acute Effect of Aerobic Exercise on Sleep in Patients With Depression N/A
Completed NCT04120363 - Trial of Testosterone Undecanoate for Optimizing Performance During Military Operations Phase 4