Clinical Trials Logo

Clinical Trial Summary

The aim of this study was therefore to investigate a new unrolled DL super resolution reconstruction of an initially low-resolution Cartesian T2 turbo spin echo sequence (T2 TSE) and compare it qualitatively and quantitatively to standard high-resolution Cartesian and non-Cartesian T2 TSE sequences in the setting of prostate mpMRI with particular interest in image sharpness, conspicuity of lesions and acquisition time. Furthermore, the investigators assessed the agreement of assigned PI-RADS scores between deep learning super resolution and standard sequences.


Clinical Trial Description

Prostate cancer has been among the most prevalent cancer types in men for years, being responsible for 7.8% of all newly diagnosed cases in 2020, holding the 2th place right after lung cancer. Early and non-invasive diagnostics was improved vastly by multiparametric MRI (mpMRI) of the prostate, detecting clinically significant prostate cancer and forming the baseline for guided biopsy of the prostate, while it can prevent unnecessary biopsies in patients with elevated prostate specific antigen, but no visible lesions. With an aging population fast, efficient and highly qualitative MRI scans are needed to satisfy this increasing demand. Deep learning image reconstruction has become increasingly important solving these tasks to produce highly qualitative images while drastically reducing acquisition time. Standard acquisition protocols of prostate mpMRI include T2-weighted, diffusion-weighted and dynamically contrast-enhanced sequences to allow for the classification of prostatic lesions according to the Prostate Imaging Reporting & Data System (PI-RADS). While the assignment of the PI-RADS score in the peripheral zone of the prostate is mainly determined by the diffusion weighted imaging, the T2-weighted-sequences are mainly responsible for the assessment of the transitional zone. Furthermore, thorough assessment of the prostate necessitates acquisition of T2-weighted sequences in axial and sagittal planes, thus extending acquisition time of MRI protocols. Different approaches have been proposed to accelerate and improve the image acquisition, ranging from the implementation of shortened protocols to the improvement of diffusion weighted sequences or using compressed sensing for the reconstruction of non-Cartesian T2-weighted-sequences. Besides these methods that rely on traditional acquisition and reconstruction methods, deep learning (DL) image reconstruction has become increasingly important solving these tasks to produce highly qualitative images while drastically reducing acquisition time. Despite that, reliable DL-methods for the process of image acquisition and reconstruction of prostate mpMRI itself are sparse. While first approaches for DL denoising has been established, effectively replacing the conventional wavelet function, the remainder of the iterative reconstruction cycle is unaffected and the impact on diagnostic performance of the PI-RADS score remains unclear. Recently developed super resolution deep learning networks are promising to overcome this limitation. First results for DL denoising in different applications, e.g. in musculoskeletal MRI already show good results, leading to significant acceleration of acquisition time while maintaining high image quality. However, the application of these denoising DL-networks in combination with more advanced super resolution networks in prostate mpMRI hasn't been evaluated yet. In this prospective study, between August and November 2022, participants with suspicion for prostate cancer underwent prostate MRI with standard high-resolution Cartesian T2 (T2C) and non-Cartesian T2 (T2NC) sequences. Additionally, a low-resolution Cartesian T2 TSE (T2SR) with DL denoising and super resolution reconstruction was acquired. Artifacts, image sharpness, lesion conspicuity, capsule delineation, overall image quality and diagnostic confidence were rated on a 5-point-Likert-Scale with being non-diagnostic and 5 being excellent. Apparent signal-to-noise ratio (aSNR), contrast-to-noise ratio (aCNR) and edge rise distance (ERD) were calculated. Friedman test and One-way ANOVA were used for group comparisons. Regarding agreement of PI-RADS scores were compared with Cohen's Kappa. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05820113
Study type Interventional
Source University Hospital, Bonn
Contact
Status Completed
Phase N/A
Start date August 1, 2022
Completion date November 30, 2022

See also
  Status Clinical Trial Phase
Recruiting NCT05540392 - An Acupuncture Study for Prostate Cancer Survivors With Urinary Issues Phase 1/Phase 2
Recruiting NCT05613023 - A Trial of 5 Fraction Prostate SBRT Versus 5 Fraction Prostate and Pelvic Nodal SBRT Phase 3
Recruiting NCT05156424 - A Comparison of Aerobic and Resistance Exercise to Counteract Treatment Side Effects in Men With Prostate Cancer Phase 1/Phase 2
Completed NCT03177759 - Living With Prostate Cancer (LPC)
Completed NCT01331083 - A Phase II Study of PX-866 in Patients With Recurrent or Metastatic Castration Resistant Prostate Cancer Phase 2
Recruiting NCT05540782 - A Study of Cognitive Health in Survivors of Prostate Cancer
Active, not recruiting NCT04742361 - Efficacy of [18F]PSMA-1007 PET/CT in Patients With Biochemial Recurrent Prostate Cancer Phase 3
Completed NCT04400656 - PROState Pathway Embedded Comparative Trial
Completed NCT02282644 - Individual Phenotype Analysis in Patients With Castration-Resistant Prostate Cancer With CellSearch® and Flow Cytometry N/A
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06305832 - Salvage Radiotherapy Combined With Androgen Deprivation Therapy (ADT) With or Without Rezvilutamide in the Treatment of Biochemical Recurrence After Radical Prostatectomy for Prostate Cancer Phase 2
Recruiting NCT05761093 - Patient and Physician Benefit/ Risk Preferences for Treatment of mPC in Hong Kong: a Discrete Choice Experiment
Completed NCT04838626 - Study of Diagnostic Performance of [18F]CTT1057 for PSMA-positive Tumors Detection Phase 2/Phase 3
Recruiting NCT03101176 - Multiparametric Ultrasound Imaging in Prostate Cancer N/A
Completed NCT03290417 - Correlative Analysis of the Genomics of Vitamin D and Omega-3 Fatty Acid Intake in Prostate Cancer N/A
Completed NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Completed NCT01497925 - Ph 1 Trial of ADI-PEG 20 Plus Docetaxel in Solid Tumors With Emphasis on Prostate Cancer and Non-Small Cell Lung Cancer Phase 1
Recruiting NCT03679819 - Single-center Trial for the Validation of High-resolution Transrectal Ultrasound (Exact Imaging Scanner ExactVu) for the Detection of Prostate Cancer
Completed NCT03554317 - COMbination of Bipolar Androgen Therapy and Nivolumab Phase 2
Completed NCT03271502 - Effect of Anesthesia on Optic Nerve Sheath Diameter in Patients Undergoing Robot-assisted Laparoscopic Prostatectomy N/A