Respiratory Distress Syndrome, Adult Clinical Trial
— MPARDSOfficial title:
Risk Assessment of Ventilator-induced Lung Injury in Patients With Acute Respiratory Distress Syndrome: The Role of Morphological Phenotype in ARDS
NCT number | NCT04157946 |
Other study ID # | HElCruce |
Secondary ID | |
Status | Completed |
Phase | |
First received | |
Last updated | |
Start date | August 7, 2017 |
Est. completion date | July 20, 2019 |
Verified date | November 2019 |
Source | Hospital El Cruce |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
Although most of the information focuses on understanding how the ventilator produces lung damage, the pulmonary factors that predispose to ventilator-induced lung injury (VILI) have been less studied. Acute respiratory distress syndrome (ARDS) can adopt different morphological phenotypes, with its own clinical and mechanical characteristics. This morphological phenotypes may favor the development of VILI for same ventilatory strategy
Status | Completed |
Enrollment | 12 |
Est. completion date | July 20, 2019 |
Est. primary completion date | July 10, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility |
Inclusion Criteria: Acute respiratory distress syndrome (ARDS). Exclusion Criteria: Emphysema Asthma Pneumothorax Oxygen saturation = 88% Severe shock Ventricular arrhythmia Myocardial ischemia. - |
Country | Name | City | State |
---|---|---|---|
Argentina | Hospital El Cruce | Florencio Varela | Buenos Aires |
Lead Sponsor | Collaborator |
---|---|
Hospital El Cruce |
Argentina,
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. — View Citation
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669. — View Citation
Cressoni M, Cadringher P, Chiurazzi C, Amini M, Gallazzi E, Marino A, Brioni M, Carlesso E, Chiumello D, Quintel M, Bugedo G, Gattinoni L. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014 Jan 15;189(2):149-58. doi: 10.1164/rccm.201308-1567OC. — View Citation
Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The "baby lung" became an adult. Intensive Care Med. 2016 May;42(5):663-673. doi: 10.1007/s00134-015-4200-8. Epub 2016 Jan 18. Review. — View Citation
Guérin C, Beuret P, Constantin JM, Bellani G, Garcia-Olivares P, Roca O, Meertens JH, Maia PA, Becher T, Peterson J, Larsson A, Gurjar M, Hajjej Z, Kovari F, Assiri AH, Mainas E, Hasan MS, Morocho-Tutillo DR, Baboi L, Chrétien JM, François G, Ayzac L, Chen L, Brochard L, Mercat A; investigators of the APRONET Study Group, the REVA Network, the Réseau recherche de la Société Française d’Anesthésie-Réanimation (SFAR-recherche) and the ESICM Trials Group. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018 Jan;44(1):22-37. doi: 10.1007/s00134-017-4996-5. Epub 2017 Dec 7. — View Citation
Nieman GF, Satalin J, Andrews P, Habashi NM, Gatto LA. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI). Intensive Care Med Exp. 2016 Dec;4(1):16. doi: 10.1186/s40635-016-0090-5. Epub 2016 Jun 18. — View Citation
Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med. 2013 Apr;41(4):1046-55. doi: 10.1097/CCM.0b013e31827417a6. — View Citation
Retamal J, Hurtado D, Villarroel N, Bruhn A, Bugedo G, Amato MBP, Costa ELV, Hedenstierna G, Larsson A, Borges JB. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study. Crit Care Med. 2018 Jun;46(6):e591-e599. doi: 10.1097/CCM.0000000000003072. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Measuring the level of pulmonary stress caused by mechanical ventilation | Twelve patients with ARDS were studied (six from each group). A balloon catheter was placed at the distal end of the esophagus to measure esophageal pressures. A pneumotachograph was used to record and quantify esophageal pressures during the ventilatory cycle. Esophageal pressure is considered as equivalent of pleural pressure. Pulmonary distention pressure (transpulmonary pressure) is obtained by measuring the difference between the pressure of the respiratory system (supplied by mechanical ventilation) and esophageal pressure. Stress was defined as the transpulmonary pressure measure at the end of an inspiratory pause (in zero flow conditions). Pulmonary stress was quantified in cmH2O. There is a linear relationship between stress and lung damage (VILI). Mann-Whitney U test was used to compare variables. Significant p < 0.05. | One year | |
Primary | Measurement of pulmonary strain caused by mechanical ventilation | Twelve patients with ARDS were studied (six from each group). A chest tomography was performed during an expiratory and inspiratory pause. Using a specific software (Lung Volume Analysis Software.Toshiba, Japan), the amount of lung volume was calculated in expiration and inspiration air (expressed in ml). The strain was defined as the relationship between the amount of volume supplied by mechanical ventilation (tidal volume) and the lung's ability to receive that volume (EELV: end expiratory lung volume). This ratio was expressed as a percentage. There is a direct relationship between strain and lung damage (VILI). Mann-Whitney U test was used to compare variables. Significant p < 0.05.. | One year | |
Primary | Measurement of injury due to cyclic opening and closing of the most unstable caused by mechanical ventilation . | Twelve patients with ARDS were studied (six from each group). Three lung regions were studied on tomography: Basal, middle and apical. A specific software quantified the amount of airless lung (100 to - 100 HU), both in expiration and inspiration. This amount was expressed in numbers of pixels. A lesion due to cyclic opening and closing of the alveoli was defined as the difference between the size of the airless lung between both respiratory times, in relation to the basal condition (lung without air at expiration). This ratio was expressed as a percentage. There is a direct relationship between this mechanism of damage and the risk of VILI. Mann-Whitney U test was used to compare variables. Significant p < 0.05. | One year | |
Secondary | Measurement of pulmonary hyperinflation caused by mechanical ventilation | Twelve patients with ARDS were studied (six from each group). Lung regions were studied on tomography: Basal, middle and apical. A specific software was quantified the amount of excess air (hyperinflation:-900 to - 1000 HU). Hyperinflation was expressed in relation to the total lung volume as a percentage. There is a direct relationship between hyperinflation and the risk of VILI. Mann-Whitney U test was used to compare variables. Significant p < 0.05. | One year |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03712215 -
STUDY OF ELECTRICAL STIMULATION IN PULMONARY FUNCTION IN INTENSIVE CARE UNIT
|
N/A | |
Completed |
NCT04582201 -
Evaluate the Safety of agenT-797 in Participants With Moderate to Severe Difficulty Breathing Secondary to SARS-CoV-2
|
Phase 1/Phase 2 | |
Recruiting |
NCT01990456 -
Strategies for Optimal Lung Ventilation in ECMO for ARDS: The SOLVE ARDS Study
|
N/A | |
Completed |
NCT01167621 -
Changes in Refractory Acute Respiratory Distress Syndrome (ARDS) Patients Under High Frequency Oscillation-ventilation
|
N/A | |
Terminated |
NCT00233207 -
IC14 Antibodies to Treat Individuals With Acute Lung Injury
|
Phase 2 | |
Completed |
NCT00029328 -
Etanercept for Non-Infectious Lung Injury Following Bone Marrow Transplantation
|
Phase 1/Phase 2 | |
Completed |
NCT00004494 -
Phase I Study of Vasoactive Intestinal Peptide in Patients With Acute Respiratory Distress Syndrome and Sepsis
|
Phase 1 | |
Completed |
NCT00000579 -
Acute Respiratory Distress Syndrome Clinical Network (ARDSNet)
|
Phase 3 | |
Recruiting |
NCT03236272 -
Establishment of a Biomarkers-based Early Warning System of Acute Respiratory Distress Syndrome (ARDS)
|
||
Withdrawn |
NCT04508933 -
Comparison of Extra Vascular Lung Water Index in Covid-19 ARDS and "Typical"ARDS Patients
|
||
Completed |
NCT02273687 -
Time-motion-mode Ultrasound Diaphragm Measures in Patients With Acute Respiratory Distress in Emergency Department
|
N/A | |
Recruiting |
NCT03424798 -
Measuring Heart and Lung Function in Critical Care
|
N/A | |
Recruiting |
NCT01992237 -
Measuring Energy Expenditure in ECMO (Extracorporeal Membrane Oxygenation) Patients
|
N/A | |
Completed |
NCT00719446 -
Evaluating Health Outcomes and QOL After ALI Among Participants of the ALTA, OMEGA, EDEN, and SAILS ARDS Network Trials
|
N/A | |
Completed |
NCT00236262 -
Effect of Positive Expiratory Pressure on Right Ventricular Function in Patients With Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT00157144 -
Australia and New Zealand Adult Extracorporeal Membrane Oxygenation (ECMO) Audit 2005
|
N/A | |
Completed |
NCT00300248 -
Long-Term Results in Mechanically Ventilated Individuals With Acute Lung Injury/Acute Respiratory Distress Syndrome
|
N/A | |
Completed |
NCT00141726 -
Study of Enbrel (Etanercept) for the Treatment Sub-Acute Pulmonary Dysfunction After Allogeneic Stem Cell Transplant
|
Phase 2 | |
Recruiting |
NCT00465374 -
A Validation/Interventional Study on Stress Index in Predicting Mechanical Stress in ARDS Patients
|
Phase 3 | |
Completed |
NCT00094406 -
Carbon Monoxide to Prevent Lung Inflammation
|
Phase 1 |