Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT01752595
Other study ID # 12-035
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date November 2012
Est. completion date December 2013

Study information

Verified date October 2020
Source Toronto Rehabilitation Institute
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Auditory motor-coupling has been shown to induce neural-entrainment that can synchronize walking-pace with sonic tempo. The extent to which acoustical-motor entrainment can induce longer-term changes to physical activity behaviours remains unclear.

Cardiac rehabilitation is essential and is associated with irrefutable mortality benefits for patients following an acute cardiac event. Randomized clinical trials have demonstrated a 25-50% improvement in survival as compared to controls; however, as many as 50% of patients will dropout of such programs prior to completion, which undermines these morbidity and mortality benefits (37; 54). Research exploring ways to improve compliance to such programs has suggested that the incorporation of music and other such holistic, patient-centered interventions into a rehabilitation/exercise program is associated with improved motivation, endurance and satisfaction amongst cardiac rehabilitation participants. The MAINTAIN study has been designed to conduct a feasibility evaluation on the effects of a preference-based music intervention on adherence to the cardiac rehabilitation program at Toronto Rehabilitation Institute. The primary objective of the trial is to evaluate the feasibility of the implementation of such a protocol within the context of the program.

This is a two-arm, block 2:1 randomized trial. 35 patients participating in cardiac rehabilitation at Toronto Rehabilitation: Cardiac Rehabilitation and Secondary Prevention Program will be recruited and participants will be randomized into: 1) control (standard, usual care); and, 2) music intervention. The randomization process employed will be a blocked 2:1 strategy, whereby subjects are randomized to the music treatment arms 2:1. All those patients randomized into arm 2 will be equally randomized into either (2) preference-based music intervention, (3) preference-based music enhanced with RAS. The primary outcome measure will be weekly physical activity over a 3 month duration as measured using tri-axial accelerometers. We will also analyze the impact of a preference-based music intervention based on audio playlist utilization, self-reported sitting times ,exercise-times, on-site attendance to the cardiac rehabilitation program (attendance), peak oxygen uptake (VO2) (stress-test), and self-efficacy levels (self-efficacy questionnaires). These measures will be collected and analyzed throughout the course of the intervention (3 months).


Recruitment information / eligibility

Status Completed
Enrollment 34
Est. completion date December 2013
Est. primary completion date December 2013
Accepts healthy volunteers No
Gender All
Age group N/A and older
Eligibility Inclusion Criteria:

- English-speaking patients, who are participating in and have been declared medically stable for out-patient cardiac rehabilitation, will be recruited from the Toronto Rehabilitation Institute's Cardiac Rehabilitation and Secondary Prevention Program.

Exclusion Criteria:

- Participants who are unable to wear the MP3 device or the activity monitoring device due to medical or non-medical issues will be excluded from this study.

- Subjects that have a medical history of seizure disorders, previous neurosurgery, or known head trauma will be excluded from this study.

- Subjects that have received a bicycle-based exercise prescription.

Study Design


Intervention

Behavioral:
Preference Based Rhythmic Auditory Stimulation Music
Patients that have been randomized into arms 2 and 3 will be blinded to the intervention they are receiving (i.e. preference-based playlist vs. preference-based playlist that has been edited to include Rhythmic Auditory Stimulation (RAS). RAS drives synchronous neural oscillation (entrainment) and functions in two ways: (1) facilitates pace and heart-rate synchrony and (2) facilitates brain state dominance (getting into the zone). RAS will be accomplished through: (1) sequencing of subject self-selected music based on tempo, (2) accentuation of the rhythmic driving pulse with added percussive-type sounds, (3) addition of binaurally detuned pitches to follow bass lines at brain-state target frequencies (e.g., 8 Hz alpha, or 16 Hz beta), and (4) the addition of binaurally detuned "background" sounds (e.g., low frequency hum) at target Hz frequencies. RAS is implemented as inherent and natural to the music and may remain imperceptible to most.
Other:
Preference Based Music Intervention


Locations

Country Name City State
Canada Toronto Cardiac Rehabilitation Institute Toronto Ontario

Sponsors (3)

Lead Sponsor Collaborator
Toronto Rehabilitation Institute Ontario Centres of Excellence, University of Toronto

Country where clinical trial is conducted

Canada, 

References & Publications (38)

(10) Van Noorden, L., & Moelants, D. Resonance in the perception of musical pulse. Journal of New Music Research 1999, 43-66

(22) Matesic B, Cromartie F, Effects Music Has on Lap Pace, Heart Rate and Perceived Exertion Rate During a 20-Minute Self-Paced, Masters' Thesis 2011

Alter DA, Iron K, Austin PC, Naylor CD; SESAMI Study Group. Socioeconomic status, service patterns, and perceptions of care among survivors of acute myocardial infarction in Canada. JAMA. 2004 Mar 3;291(9):1100-7. — View Citation

Anshel MH, Marisi D. Effect of music and rhythm on physical performance. Res Q. 1978 May;49(2):109-13. — View Citation

Bandura A. Health promotion by social cognitive means. Health Educ Behav. 2004 Apr;31(2):143-64. — View Citation

Bassett DR Jr, Ainsworth BE, Swartz AM, Strath SJ, O'Brien WL, King GA. Validity of four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc. 2000 Sep;32(9 Suppl):S471-80. — View Citation

Bradt J, Dileo C. Music for stress and anxiety reduction in coronary heart disease patients. Cochrane Database Syst Rev. 2009 Apr 15;(2):CD006577. doi: 10.1002/14651858.CD006577.pub2. Review. Update in: Cochrane Database Syst Rev. 2013;12:CD006577. — View Citation

Brownley KA, McMurray RG, Hackney AC. Effects of music on physiological and affective responses to graded treadmill exercise in trained and untrained runners. Int J Psychophysiol. 1995 Apr;19(3):193-201. — View Citation

Chan RH, Gordon NF, Chong A, Alter DA; Socio-Economic and Acute Myocardial Infarction Investigators. Influence of socioeconomic status on lifestyle behavior modifications among survivors of acute myocardial infarction. Am J Cardiol. 2008 Dec 15;102(12):1583-8. doi: 10.1016/j.amjcard.2008.08.022. Epub 2008 Oct 9. — View Citation

Cho, Jeongmin (2009). The effect of music therapy on mood, perceived exertion, and exercise adherence of patients participating in a rehabilitative upper extremity exercise program. University of Kansas, Master's Thesis: Music Education & Music Therapy.

Copeland BL, Franks BD. Effects of types and intensities of background music on treadmill endurance. J Sports Med Phys Fitness. 1991 Mar;31(1):100-3. — View Citation

De Angelis C, Bunker S, Schoo A. Exploring the barriers and enablers to attendance at rural cardiac rehabilitation programs. Aust J Rural Health. 2008 Jun;16(3):137-42. doi: 10.1111/j.1440-1584.2008.00963.x. — View Citation

Edworthy J, Waring H. The effects of music tempo and loudness level on treadmill exercise. Ergonomics. 2006 Dec 15;49(15):1597-610. — View Citation

Everett B, Salamonson Y, Davidson PM. Bandura's exercise self-efficacy scale: validation in an Australian cardiac rehabilitation setting. Int J Nurs Stud. 2009 Jun;46(6):824-9. doi: 10.1016/j.ijnurstu.2009.01.016. Epub 2009 Mar 4. — View Citation

Garatachea N, Torres Luque G, González Gallego J. Physical activity and energy expenditure measurements using accelerometers in older adults. Nutr Hosp. 2010 Mar-Apr;25(2):224-30. Review. — View Citation

Gfeller, K. (1988). Musical components and styles preferred by young adults for aerobic fitness activities. Journal of Music Therapy, 25, 28-43.

Glazer KM, Emery CF, Frid DJ, Banyasz RE. Psychological predictors of adherence and outcomes among patients in cardiac rehabilitation. J Cardiopulm Rehabil. 2002 Jan-Feb;22(1):40-6. — View Citation

Grace SL, Gravely-Witte S, Brual J, Monette G, Suskin N, Higginson L, Alter DA, Stewart DE. Contribution of patient and physician factors to cardiac rehabilitation enrollment: a prospective multilevel study. Eur J Cardiovasc Prev Rehabil. 2008 Oct;15(5):548-56. doi: 10.1097/HJR.0b013e328305df05. — View Citation

Hagan NA, Botti MA, Watts RJ. Financial, family, and social factors impacting on cardiac rehabilitation attendance. Heart Lung. 2007 Mar-Apr;36(2):105-13. — View Citation

Hayakawa Y, Miki H, Takada K, Tanaka K. Effects of music on mood during bench stepping exercise. Percept Mot Skills. 2000 Feb;90(1):307-14. — View Citation

Johnson G, Otto D, Clair AA. The effect of instrumental and vocal music on adherence to a physical rehabilitation exercise program with persons who are elderly. J Music Ther. 2001 Summer;38(2):82-96. — View Citation

Karageorghis CI, Jones L, Priest DL, Akers RI, Clarke A, Perry JM, Reddick BT, Bishop DT, Lim HB. Revisiting the relationship between exercise heart rate and music tempo preference. Res Q Exerc Sport. 2011 Jun;82(2):274-84. Erratum in: Res Q Exerc Sport. 2011 Sep;82(3):592. — View Citation

Karageorghis CI, Mouzourides DA, Priest DL, Sasso TA, Morrish DJ, Walley CJ. Psychophysical and ergogenic effects of synchronous music during treadmill walking. J Sport Exerc Psychol. 2009 Feb;31(1):18-36. — View Citation

Karageorghis, C.I., Priest, D.L., Williams, L.S., Hirani, R.M., Lannon, K.M., & Bates, B.J. (2010). Ergogenic and psychological effects of synchronous music during circuit-type exercise. Psychology of Sport and Exercise, 11, 551-559.

Konlaan BB, Björby N, Bygren LO, Weissglas G, Karlsson LG, Widmark M. Attendance at cultural events and physical exercise and health: a randomized controlled study. Public Health. 2000 Sep;114(5):316-9. — View Citation

Konlaan BB, Bygren LO, Johansson SE. Visiting the cinema, concerts, museums or art exhibitions as determinant of survival: a Swedish fourteen-year cohort follow-up. Scand J Public Health. 2000 Sep;28(3):174-8. — View Citation

Marrero DG, Fremion AS, Golden MP. Improving compliance with exercise in adolescents with insulin-dependent diabetes mellitus: results of a self-motivated home exercise program. Pediatrics. 1988 Apr;81(4):519-25. — View Citation

Molloy GJ, Perkins-Porras L, Strike PC, Steptoe A. Social networks and partner stress as predictors of adherence to medication, rehabilitation attendance, and quality of life following acute coronary syndrome. Health Psychol. 2008 Jan;27(1):52-8. doi: 10.1037/0278-6133.27.1.52. — View Citation

O'Konski M, Bane C, Hettinga J, Krull K. Comparative effectiveness of exercise with patterned sensory enhanced music and background music for long-term care residents. J Music Ther. 2010 Summer;47(2):120-36. — View Citation

Patel SA, Benzo RP, Slivka WA, Sciurba FC. Activity monitoring and energy expenditure in COPD patients: a validation study. COPD. 2007 Jun;4(2):107-12. — View Citation

Pearce, K. A. (1981). Effects of different types of music on physical strength. Perceptual and Motor Skills, 53, 351-352.

Rhodes RE, Warburton DE, Bredin SS. Predicting the effect of interactive video bikes on exercise adherence: An efficacy trial. Psychol Health Med. 2009 Dec;14(6):631-40. doi: 10.1080/13548500903281088. — View Citation

Slootmaker SM, Chin A Paw MJ, Schuit AJ, van Mechelen W, Koppes LL. Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference. Scand J Med Sci Sports. 2009 Feb;19(1):36-43. doi: 10.1111/j.1600-0838.2007.00740.x. Epub 2008 Feb 4. — View Citation

van der Vlist B, Bartneck C, Mäueler S. moBeat: Using interactive music to guide and motivate users during aerobic exercising. Appl Psychophysiol Biofeedback. 2011 Jun;36(2):135-45. doi: 10.1007/s10484-011-9149-y. — View Citation

Van Noorden, L., & Moelants, D. (1999). Resonance in the perception of musical pulse. Journal of New Music Research, 28, 43-66

White JM. Effects of relaxing music on cardiac autonomic balance and anxiety after acute myocardial infarction. Am J Crit Care. 1999 Jul;8(4):220-30. — View Citation

Worcester MU, Murphy BM, Mee VK, Roberts SB, Goble AJ. Cardiac rehabilitation programmes: predictors of non-attendance and drop-out. Eur J Cardiovasc Prev Rehabil. 2004 Aug;11(4):328-35. — View Citation

Zimmerman LM, Pierson MA, Marker J. Effects of music on patient anxiety in coronary care units. Heart Lung. 1988 Sep;17(5):560-6. — View Citation

* Note: There are 38 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Interview and Focus Group Tertiary outcomes of the study will include information gathered regarding music playlist preferences and subjective opinions about the role of music in exercise programs through post-intervention interviews (attached). Other secondary outcomes include the energy expenditure and activity time as recorded over the entire three-month period by the activity monitoring device and MP3 device (this data collected every 2 weeks). 3 months
Primary Duration of physical activity The primary outcome will be the total weekly physical activity volume as determined using triaxial accelerometers. 3 months
Secondary On-site program attendance Adherence will be measured quantitatively by assessing the number of missed appointments vs. amount of scheduled appointments. 3 months
Secondary Change in Cardio Pulmonary Assessment Score Fitness levels will be measured by assessing peak VO2 (ml/kg-1* min-1), an objective, clinical measure of the volume of oxygen consumed while exercising at the maximum capacity. Those with higher VO2max values are more fit and can exercise more intensely, indicating a greater functional capacity than those with lower VO2max values. Baseline, 3 months
Secondary Changes in Stafford Self-Efficacy Questionnaire/Cardiac Self-Efficacy Questionnaire Scores Changes in self efficacy will be measured using the combined score of two self-efficacy questionnaires administered by Toronto Rehabilitation Institute Baseline, 3 months
Secondary Audio-play list use We will track the number of song plays on each patients playlist 3 months
Secondary Study recruitment and drop-out We will determine the proportion of patients screened, recruited, and who completed the study protocol 3 months
See also
  Status Clinical Trial Phase
Recruiting NCT06013813 - Conventional vs. Distal Radial Access Outcomes in STEMI Patients Treated by PCI N/A
Completed NCT04507529 - Peer-mentor Support for Older Vulnerable Myocardial Infarction Patients N/A
Recruiting NCT06066970 - Cardiac Biomarkers for the Quantification of Myocardial Damage After Cardiac Surgery
Recruiting NCT03620266 - Effects of Bilberry and Oat Intake After Type 2 Diabetes and/or MI N/A
Completed NCT04097912 - Study to Gather Information to What Extent Patients Follow the Treatment Regimen of Low-dose Aspirin for Primary and Secondary Prevention of Diseases of the Heart and Blood Vessels
Completed NCT04153006 - Comparison of Fingerstick Versus Venous Sample for Troponin I.
Completed NCT03668587 - Feasibility and Security of a Rapid Rule-out and rule-in Troponin Protocol in the Management of NSTEMI in an Emergency Departement
Recruiting NCT01218776 - International Survey of Acute Coronary Syndromes in Transitional Countries
Completed NCT03076801 - Does Choral Singing Help imprOve Stress in Patients With Ischemic HeaRt Disease? N/A
Recruiting NCT05371470 - Voice Analysis Technology to Detect and Manage Depression and Anxiety in Cardiac Rehabilitation N/A
Recruiting NCT04562272 - Attenuation of Post-infarct LV Remodeling by Mechanical Unloading Using Impella-CP N/A
Completed NCT04584645 - A Digital Flu Intervention for People With Cardiovascular Conditions N/A
Active, not recruiting NCT04475380 - Complex All-comers and Patients With Diabetes or Prediabetes, Treated With Xience Sierra Everolimus-eluting Stents
Not yet recruiting NCT06007950 - Time-restricted Eating Study (TRES): Impacts on Anthropometric, Cardiometabolic and Cardiovascular Health N/A
Withdrawn NCT05327855 - Efficacy and Safety of OPL-0301 Compared to Placebo in Adults With Post-Myocardial Infarction (MI) Phase 2
Recruiting NCT02876952 - High Intensity Aerobic Interval Training With Mediterranean Diet Recommendations in Post-Myocardial Infarct Patients N/A
Completed NCT02917213 - Imaging Silent Brain Infarct And Thrombosis in Acute Myocardial Infarction
Completed NCT02711631 - Feasibility and Effectiveness of Remote Virtual Reality-Based Cardiac Rehabilitation N/A
Completed NCT02305602 - A Study of VentriGel in Post-MI Patients Phase 1
Completed NCT02552407 - Thrombectomy in ST Elevation Myocardial Infarction, an Individual Patient Meta-analysis N/A