Clinical Trials Logo

Clinical Trial Summary

Total joint replacement is an efficacious treatment for osteoarthritis of hips and knees. Both total knee replacement (TKR) and total hip replacements (THR) have excellent implant survivorship. However, patient satisfaction is lower in TKR than THR. A possible cause of the discrepancy is the unnatural knee kinematics after TKR. Various implants designs have been developed to solve the problem. However, most of their designs are based on experimental data and little has been studied about their actual performance in vivo. In this study, the investigators will analyze the in vivo stability of the Global Medacta Knee Sphere (GMK Sphere) implant. Migration of the implants will be monitored with a high precision measuring method called Radiostereometric Analysis (RSA). The investigators assume the investigators study will contribute the development of more satisfying knee implants.


Clinical Trial Description

Worldwide the number of patients requiring treatment for osteoarthritis is increasing due to increasing obesity, an ageing population and a high demanding younger population. Learmonth describes hip arthroplasty as the "operation of the century" because patients are highly satisfied with pain relief and function after the procedure. Knee arthroplasties have in recent years also shown promising results and have surpassed hip arthroplasty in frequency in western countries. However, patient satisfaction is not as high. Reported problems are insufficient function and persistent pain. On the other hand, knee arthroplasties are increasingly implanted in younger and more active patients who require high function and quality of life. Improvement of knee implants is an urgent issue in the field of orthopaedic research. Knee Kinematics and implant designs A possible cause of lower function of replaced knees is the unnatural postoperative knee kinematics. Kinematics of replaced knees is closely related to their function. Studies show that replaced knees with excellent flexion angles have kinematic similarities to normal knees and malalignments of implants can cause postoperative pain. Compared to hip joints which are simple ball-and socket joints, the kinematics of knee joints is more complex. The kinematics are a combination of a rolling and gliding motion of the femoral condyles and rotation of the tibia. Based on the kinematics of the normal knee joint, various attempts have been made on the design of knee implants to reconstruct normal kinematics after replacement surgery. All of these implants have satisfying survivorship, but unicondylar arthroplasty which retains both cruciate ligaments has the best clinical results with survivorship at 15 years 93%. In total knee replacement (TKR) the Anterior Cruciate Ligament (ACL) and possibly the Posterior Cruciate Ligament (PCL) are sacrified. When sacrificing the one or both of the cruciate ligaments, natural knee kinematics are affected. The function of the cruciate ligaments can be mimicked by different designs of the tibial insert. The most used knee implant in Norway, the NexGen Cruciate-retaining (CR) implant design, does not retain the ACL and does not mimic natural knee kinematics. The tibial insert of the medial pivot implant design (GMK Sphere) has a constrained medial ball in socket joint and at the same time allows lateral anterioposterior movement. This new design was developed by a group of dedicated researchers. The design intention is to resemble the function of the cruciate ligaments and at the same time allow for lateral anterioposterior movement (rollback). Small alterations in implant design can influence the survival of implants. The final design of the GMK Sphere was introduced in 2012. New implants should be monitored and assessed in small, controlled trials with high precision measuring methods. Analytical Method RSA has been used in orthopedic research fields since 1970s. The original application of this method was for the evaluation of implant migration (i.e. fixation) and polyethylene wear of artificial joints using static X-ray pictures. Clinically relevant association between early migration of tibial implants detected by RSA and late revision for loosening has been reported. Also, attempts to measure in vivo polyethylene wear have been reported using RSA. Purpose of this study The aim of this study is to analyse the in vivo performance (e.g. stability) of a medially stabilized knee arthroplasty implant (Medacta International, GMK Sphere) using static RSA method over a period of 5 years. 2-year results have already been analysed and are inconclusive in regards to migration as the implant is apparently stable, but shows greater than anticipated movement. Mid-term follow-up (5-year) is therefore essential to evaluate migration of this implant. We therefore wish to obtain 5-year follow-ups of these patients. Additionally, the investigators will analyse the wear in the ball and socket (medial) side of the tibiofemoral articulation. 30 patients will go through stability and wear testing with static RSA. This study will contribute to the safety for patients with this new implant by providing basic knowledge of this knee arthroplasty and promoting further development of knee implant designs. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02861794
Study type Interventional
Source Oslo University Hospital
Contact
Status Active, not recruiting
Phase N/A
Start date May 2016
Completion date December 31, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT04651673 - Prescribed Knee Brace Treatments for Osteoarthritis of the Knee (Knee OA)
Completed NCT05677399 - Knee Osteoarthritis Treatment With Peloidotherapy and Aquatic Exercise. N/A
Active, not recruiting NCT04043819 - Evaluation of Safety and Exploratory Efficacy of an Autologous Adipose-derived Cell Therapy Product for Treatment of Single Knee Osteoarthritis Phase 1
Recruiting NCT06000410 - A Study to Evaluate the Efficacy of Amniotic Suspension Allograft in Patients With Osteoarthritis of the Knee Phase 3
Completed NCT05014542 - Needling Techniques for Knee Osteoarthritis N/A
Recruiting NCT05892133 - Prehabilitation Effect on Function and Patient Satisfaction Following Total Knee Arthroplasty N/A
Recruiting NCT05528965 - Parallel Versus Perpendicular Technique for Genicular Radiofrequency N/A
Active, not recruiting NCT03472300 - Prevalence of Self-disclosed Knee Trouble and Use of Treatments Among Elderly Individuals
Active, not recruiting NCT02003976 - A Randomized Trial Comparing High Tibial Osteotomy Plus Non-Surgical Treatment and Non-Surgical Treatment Alone N/A
Active, not recruiting NCT04017533 - Stability of Uncemented Medially Stabilized TKA N/A
Completed NCT04779164 - The Relation Between Abdominal Obesity, Type 2 Diabetes Mellitus and Knee Osteoarthritis N/A
Recruiting NCT04006314 - Platelet Rich Plasma and Neural Prolotherapy Injections in Treating Knee Osteoarthritis N/A
Recruiting NCT05423587 - Genicular Artery Embolisation for Knee Osteoarthritis II N/A
Enrolling by invitation NCT04145401 - Post Market Clinical Follow-Up Study- EVOLUTION® Revision CCK
Active, not recruiting NCT03781843 - Effects of Genicular Nerve Block in Knee Osteoarthritis N/A
Recruiting NCT05974501 - Pre vs Post Block in Total Knee Arthroplasty (TKA) Phase 4
Completed NCT05324163 - Evaluate Efficacy and Safety of X0002 in Treatment of Knee Osteoarthritis Phase 3
Completed NCT05529914 - Effects of Myofascial Release and Neuromuscular Training for Pes Anserine Syndrome Associated With Knee Osteoarthritis N/A
Recruiting NCT05693493 - Can Proprioceptive Knee Brace Improve Functional Outcome Following TKA? N/A
Not yet recruiting NCT05510648 - Evaluation of the Effect of High-intensity Laser Therapy in Knee Osteoarthritis N/A