Clinical Trials Logo

Clinical Trial Summary

Infants are at risk of developing motor and cognitive neurodevelopmental disabilities as a sequelae to hypoxic-ischemic brain injury during the perinatal period. It is an ongoing challenge to predict the severity and extent of future developmental impairment during the neonatal period. This study will help test the feasibility of conducting a large-scale study that evaluates the role of diffuse optical tomography as a bedside neuroimaging tool in complementing the prognostic value of conventional and diffusion weighted MRI for predicting neurodevelopmental outcome in neonates with perinatal hypoxic-ischemic brain injury.


Clinical Trial Description

Perinatal hypoxic-ischemic brain injury is a major cause of childhood disabilities including cerebral palsy, developmental delay, attention deficits, behavioral concerns, and learning disabilities. Accurate prediction of neurologic deficits in the neonatal period is difficult, especially the ability to predict later cognitive impairment and socio-emotional challenges. Many of these disabilities are manifested at school age when the child is beyond the critical time window of early brain development. Prognostic tools that help to identify neonates most at risk of developing neuro-deficits after perinatal asphyxia are needed and would enable targeted early intervention in infancy, when the developing brain is most amenable to positive changes and improve neurologic outcome. Currently, structural changes observed in MRI brain images are used to predict outcome. However, this modality does not provide information on brain function, nor is it a good prognostic marker of future neurocognitive outcome. Functional MRI (fMRI) is time-consuming and not commonly a part of clinical assessment of the neonates. Diffuse Optical Tomography (DOT) using near-infrared light has been applied in research settings to map the functional connections between key brain regions. This technology, although reported to be safe and reliable in small studies, has not been widely used in the neonatal clinical setting. This approach is based on the synchronous, spontaneous fluctuations of cerebral blood flow in different regions of the brain that are functionally, yet not necessarily anatomically connected. DOT combines the portability and cap-based scanning of EEG with spatial resolution high enough to create detailed cortical maps of the neonatal brain. Compared to MRI and fMRI brain imaging, DOT is portable, light weight, has high body motion tolerance, does not produce noise and does not require infant sedation. It has the potential to be a powerful bedside non-invasive clinical neuroimaging tool. Currently, the predictive accuracy of DOT based neonatal brain connectivity measures in prognosticating early childhood is unknown. This study aims to assess the feasibility of the processes that are key to the success of a large-scale prospective study aimed at investigating the prognostic value of bedside DOT derived biomarker in neonatal brain after perinatal hypoxic-ischemic brain injury. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05514665
Study type Observational
Source Hamilton Health Sciences Corporation
Contact Ipsita Goswami, MD, MSc
Phone 9055212100
Email goswamii@mcmaster.ca
Status Not yet recruiting
Phase
Start date March 2024
Completion date April 1, 2026

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05048550 - Babies in Glasses; a Feasibility Study. N/A
Recruiting NCT05514340 - Assess Safety and Efficacy of Sovateltide in Hypoxic-ischemic Encephalopathy Phase 2
Recruiting NCT05836610 - Hydrocortisone Therapy Optimization During Hypothermia Treatment in Asphyxiated Neonates Phase 4
Completed NCT03024021 - Cerebral Oxymetry and Neurological Outcome in Therapeutic Hypothermia
Completed NCT01913340 - Neonatal Erythropoietin And Therapeutic Hypothermia Outcomes in Newborn Brain Injury (NEATO) Phase 1/Phase 2
Enrolling by invitation NCT02260271 - Florida Neonatal Neurologic Network
Terminated NCT01192776 - Optimizing (Longer, Deeper) Cooling for Neonatal Hypoxic-Ischemic Encephalopathy(HIE) N/A
Completed NCT06344286 - The Effects of Minimal Enteral Nutrition on Mesenteric Blood Flow and Oxygenation in Neonates With HIE N/A
Recruiting NCT05901688 - Umbilical Cord Abnormalities in the Prediction of Adverse Pregnancy Outcomes
Recruiting NCT02894866 - Hyperbaric Oxygen Therapy Improves Outcome of Hypoxic-Ischemic Encephalopathy N/A
Recruiting NCT03682042 - Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries Developmental Follow Up N/A
Recruiting NCT03657394 - Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries N/A
Withdrawn NCT03681314 - Umbilical Cord Milking in Neonates Who Are Depressed at Birth-Developmental Follow Up (MIDAB-FU) N/A
Completed NCT03485781 - Propofol-induced EEG Changes in Hypoxic Brain Injury
Recruiting NCT05568264 - Effects of a Physical Therapy Intervention on Motor Delay in Infants Admitted to a Neonatal Intensive Care Unit N/A
Completed NCT02264808 - Developmental Outcomes
Completed NCT05687708 - Effect of Non-nutritive Sucking on Transition to Oral Feeding in Infants With Asphyxia N/A
Recruiting NCT06195345 - Individual Cerebral Hemodynamic Oxygenation Relationships (ICHOR 1)
Completed NCT01793129 - Preemie Hypothermia for Neonatal Encephalopathy N/A
Completed NCT00890409 - Safety and Efficacy of Hypothermia to Treat Neonatal Hypoxic-Ischemic Encephalopathy Phase 3