Clinical Trials Logo

Clinical Trial Summary

Remote Ischemic Conditioning has never been studied in neonates with HIE. However, RIC has been studied in animal models of perinatal asphyxia and has shown encouraging results. In neonatal rats with HIE, RIC is associated with reduced sensory motor deficits compared to non-RIC, and repeated cycles in three consecutive days is superior to a single treatment. In piglets, four cycles of 10 minutes of bilateral hindlimb ischemia immediately after bilateral common carotid occlusion results in reduced cell death in the periventricular white matter and internal capsule. These preclinical studies support the hypothesis that RIC may be beneficial in infants with HIE.


Clinical Trial Description

Hypoxic-ischemic encephalopathy (HIE) is a devastating condition in which newborn infants are deprived of oxygen in the peripartum period, resulting in brain injury. HIE is a leading cause of infant morbidity and mortality worldwide. Within the last 15 years, the introduction of hypothermia as a therapy for HIE has revolutionized our care of these vulnerable infants, but despite these improvements, nearly 50% of infants die or have major disability at 18 months. Therefore, there is a significant need to develop novel adjunctive therapies for HIE. Remote ischemic conditioning (RIC) is a procedure that involves the application of brief cycles of non-lethal ischemia and reperfusion to a remote site, with the goal of protecting distant organs exposed to ischemic injury. RIC has been extensively studied in experimental models and applied clinically in adults, children, and neonates. In neonates, there have been trials exploring its potential role before cardiac surgery and necrotizing enterocolitis. Most of these studies performed up to 4 cycles of 5 minutes of ischemia in a single day and found RIC to be feasible and safe. Experimental studies suggest that RIC, acting through three inter-related mechanisms (neural, humoral, and systemic pathways) is associated with increased cerebral blood flow, decreased inflammation, and enhanced cell survival. RIC has been studied as a potential treatment in adult stroke, and while the evidence to date is inconclusive, preliminary data suggest that RIC may reduce the size and the severity of the stroke lesion, as well as improve cognitive outcomes. RIC has been studied in animal models of perinatal asphyxia and has shown encouraging results. In neonatal rats with HIE, RIC is associated with reduced sensory motor deficits compared to non-RIC, and repeated cycles in three consecutive days is superior to a single treatment. In piglets, four cycles of 10 minutes of bilateral hindlimb ischemia immediately after bilateral common carotid occlusion results in reduced cell death in the periventricular white matter and internal capsule. These preclinical studies support the hypothesis that RIC may be beneficial in infants with HIE. In this proposal, we outline a carefully designed and conducted early phase study of RIC in neonates with HIE. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05379218
Study type Interventional
Source The Hospital for Sick Children
Contact
Status Completed
Phase N/A
Start date January 17, 2022
Completion date February 5, 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT05048550 - Babies in Glasses; a Feasibility Study. N/A
Recruiting NCT05514340 - Assess Safety and Efficacy of Sovateltide in Hypoxic-ischemic Encephalopathy Phase 2
Recruiting NCT05836610 - Hydrocortisone Therapy Optimization During Hypothermia Treatment in Asphyxiated Neonates Phase 4
Completed NCT03024021 - Cerebral Oxymetry and Neurological Outcome in Therapeutic Hypothermia
Completed NCT01913340 - Neonatal Erythropoietin And Therapeutic Hypothermia Outcomes in Newborn Brain Injury (NEATO) Phase 1/Phase 2
Enrolling by invitation NCT02260271 - Florida Neonatal Neurologic Network
Terminated NCT01192776 - Optimizing (Longer, Deeper) Cooling for Neonatal Hypoxic-Ischemic Encephalopathy(HIE) N/A
Completed NCT06344286 - The Effects of Minimal Enteral Nutrition on Mesenteric Blood Flow and Oxygenation in Neonates With HIE N/A
Recruiting NCT05901688 - Umbilical Cord Abnormalities in the Prediction of Adverse Pregnancy Outcomes
Recruiting NCT02894866 - Hyperbaric Oxygen Therapy Improves Outcome of Hypoxic-Ischemic Encephalopathy N/A
Recruiting NCT03657394 - Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries N/A
Recruiting NCT03682042 - Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries Developmental Follow Up N/A
Withdrawn NCT03681314 - Umbilical Cord Milking in Neonates Who Are Depressed at Birth-Developmental Follow Up (MIDAB-FU) N/A
Completed NCT03485781 - Propofol-induced EEG Changes in Hypoxic Brain Injury
Recruiting NCT05568264 - Effects of a Physical Therapy Intervention on Motor Delay in Infants Admitted to a Neonatal Intensive Care Unit N/A
Completed NCT02264808 - Developmental Outcomes
Completed NCT05687708 - Effect of Non-nutritive Sucking on Transition to Oral Feeding in Infants With Asphyxia N/A
Recruiting NCT06195345 - Individual Cerebral Hemodynamic Oxygenation Relationships (ICHOR 1)
Withdrawn NCT05295784 - PK and Safety of Caffeine in Neonates With Hypoxic Ischemic Encephalopathy Receiving Therapeutic Hypothermia Phase 1
Completed NCT01793129 - Preemie Hypothermia for Neonatal Encephalopathy N/A