Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03822442
Other study ID # 11408
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date November 1, 2019
Est. completion date December 31, 2024

Study information

Verified date July 2022
Source Children's National Research Institute
Contact Laura Olivieri, MD
Phone 202-476-2020
Email lolivieri@childrensnational.org
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Overall Research Strategy of this protocol is to refine and validate noninvasive CMR imaging sequences with invasive hemodynamic and pathology results to create a comprehensive, noninvasive, radiation-reduced regimen for pediatric cardiomyopathy and cardiac transplant assessment. We were the first to perform MR-guided cardiac catheterization in US children, and have accumulated the largest US experience, having performed over 75 procedures to date. Our unique experience puts us in strong position to leverage this technology to improve care of children with cardiomyopathy and transplant. Using an integrated approach, we will simultaneously (1) validate imaging measures of cardiac edema and fibrosis by correlating T1 and T2 map images with endomyocardial biopsy (EMB) results in Aim 1; (2) overlay T1, T2 map images into our x-ray system to display "hotspots" of T1 and T2 abnormalities to guide EMB in Aim 2; and (3) obtain radiation-free hemodynamic data in a highly vulnerable pediatric population by using CMR to guide catheter manipulation in the ICMR suite in Aim 3. Age and diagnosis-matched historical controls will be identified from the last 10 years at Children's National as a control population for specific purposes of comparing (1) EMB yield without image overlay and (2) Radiation exposure during X-ray guided right heart catheterization. Identical information will be obtained and stored in the same 45CFR compliant database. Historical controls will be identified from the cardiac catheterization database by searching for age and diagnosis. A waiver of consent will be applicable here, as it would be inconvenient, insensitive and not feasible to consent families who have already undergone treatment.


Description:

Anesthesia and Vascular Access After final review of protocol eligibility and of MRI safety, vascular access is obtained and sheaths are secured and covered with a sterile drape for transfer to the MRI. The catheterization is performed with continuous recording of electrocardiogram signals, transcutaneous hemoglobin ("pulse") oximetry, and under direct observation of an anesthesia licensed independent provider. Diagnostic Cardiac MRI Before MRI catheterization begins, a focused cardiac MRI is performed to understand cardiac function and localize the proposed catheter trajectory from the access site into the targeted cardiovascular chambers. MRI-guided catheterization Next during real-time MRI, a passive catheter is advanced from the access site into the targeted cardiovascular chambers under imaging guidance. Hemodynamic measurements (using fluid-filled transducers connected to the catheters) and blood hemoglobin saturation specimens are obtained from targeted cardiovascular chambers. Additional clinically-indicated and, if time allows, up to 30 minutes of research MRI is then performed before the subject is returned to the X-ray system. Research MR Imaging Additional research cardiac MRI imaging to determine T1 and T2 values is undertaken next, with 6 short axis slices and one long axis slice positions identified for T1 map and T2 map acquisitions. The ICMR laboratory has a robust experience with acquisition of parametric mapping sequences. T1 and T2 maps will provide a roadmap for the cardiac biopsy that the patient requires in the xray suite. Image Fusion to Guide Endomyocardial Biopsy At the conclusion of the MR imaging and MR-guided right heart catheterization procedure, the subject is returned to the X-ray suite for cardiac biopsy. Some cardiac biopsies are obtained in the usual fashion, and some biopsy specimens are obtained using image overlay software to display the regions of abnormal T1 and T2 onto the fluoroscopy system. Conclusion of the procedure Following standard of care EMB, standard of care coronary angiography is obtained when if clinically indicated, all catheters and sheaths are removed and the subject is observed for complications in the cardiac procedure recovery unit or intensive care unit for at least 6 hours. Diagnostic Echocardiogram Standard clinical data with strain analysis will be collected from the echocardiogram that is performed as a standard of care. Patients undergo a clinically indicated echocardiogram exam following the catheterization procedure in the Cardiac Post Recovery Unit (CPRU). Blood Tests Serum for creatinine blood test will be collected at the time the clinically indicated IV is placed. Creatinine Is the standard test used at Children's National to assess kidney function. A total of 1cc of blood will be drawn to complete the test. For subjects who consent to the optional study, an additional 5cc of blood work will be drawn at the time that the intravascular catheter is inserted for the clinically indicated cardiac catheterization procedure. The blood samples will be identified with the study ID number only, and will be stored in a secure freezer owned and maintained by the department of cardiology located at the Sheikh Zayed campus. This blood will be used to identify serum biomarkers, and to validate the potential use for diagnostic purposes. Follow-up procedures At the conclusion of the procedure, the subject is returned to the X-ray table and all catheters are removed. The subject is observed for complications in an advanced nursing recovery unit or intensive care unit for at least 6 hours. The subject will be assessed for early and late complications at the time of discharge, and again approximately 2-6 weeks ± 7 days post procedure. MRI Image Analysis In all cardiomyopathy and heart transplant patients, T1 measurements will be performed using offline analysis software according to our laboratory's measurement SOP for parametric maps. In heart transplant patients only, T2 measurements will be performed according to our laboratory's measurement SOP for parametric maps. Following measurements, images will be created for Image Overlay onto the fluoroscopy for patients undergoing clinically-indicated cardiac biopsy following the catheterization. Biopsy Sample Analysis All biopsy samples will be evaluated clinically for evidence of cellular rejection, and a clinical report will be generated per clinical standard of care. In addition, each of the samples will undergo a separate staining procedure to identify regions of fibrosis. Digital images will be taken of the stained samples. Image processing software will be used to quantify percent fibrosis. Historical Controls (for radiation exposure comparison, and biopsy yield comparison) Age and diagnosis-matched historical controls will be identified from the last 10 years at Children's National as a control population for specific purposes of comparing (1) EMB yield without image overlay and (2) Radiation exposure during X-ray guided right heart catheterization. Identical information will be obtained and stored in the same 45CFR compliant database. Historical controls will be identified from the cardiac catheterization database by searching for age and diagnosis. A waiver of consent will be applicable here, as it would be inconvenient, insensitive and not feasible to consent families who have already undergone treatment. Subjects will not be provided additional information as a result of this research study. Data will be reviewed in aggregate generating generalizable knowledge not applicable to an individual subject


Recruitment information / eligibility

Status Recruiting
Enrollment 200
Est. completion date December 31, 2024
Est. primary completion date December 31, 2024
Accepts healthy volunteers No
Gender All
Age group 6 Months and older
Eligibility Inclusion Criteria: - Children and adults of any age with heart transplant, suspected or confirmed cardiomyopathy - Undergoing clinically-indicated ("medically necessary") cardiovascular catheterization Exclusion Criteria: - Cardiovascular instability including hemodynamic instability (such as requiring significant vasoactive infusion support) or mechanical hemodynamic support. - Women who are pregnant - Women who are nursing and who do not plan to discard breast milk for 24 hours - Exclusion criteria for MRI - Central nervous system aneurysm clips - Implanted neural stimulator - Implanted cardiac pacemaker or defibrillator which are not MR safe or MR conditional according to the manufacturer - Cochlear implant - Ocular foreign body (e.g. metal shavings) - Implanted Insulin pump - Metal shrapnel or bullet. - Exclusion criteria for Gadolinium - Renal disease with estimated glomerular filtration rate [eGFR] < 30 ml/min/1.73 m2 body surface area The eGFR will be used to estimate renal function if reported by the laboratory. The Schwartz equation 33 for estimation of GFR in children as recommended by the NKDEP is as follows: GFR (mL/min/1.73 m2) = (k × height) / serum creatinine concentration where k = constant defined as follows: k = 0.33 in premature infants k = 0.45 in term infants to 1 year of age k = 0.55 in children to 13 years of age k = 0.70 in adolescent males (not females because of the presumed increase in male muscle mass, the constant remains 0.55 for females) Height in cm Serum creatinine in mg/dL

Study Design


Locations

Country Name City State
United States Children's National Health System Washington District of Columbia

Sponsors (1)

Lead Sponsor Collaborator
Laura Olivieri

Country where clinical trial is conducted

United States, 

References & Publications (26)

Abu Hazeem AA, Dori Y, Whitehead KK, Harris MA, Fogel MA, Gillespie MJ, Rome JJ, Glatz AC. X-ray magnetic resonance fusion modality may reduce radiation exposure and contrast dose in diagnostic cardiac catheterization of congenital heart disease. Catheter Cardiovasc Interv. 2014 Nov 1;84(5):795-800. doi: 10.1002/ccd.25473. Epub 2014 Mar 20. — View Citation

Ait-Ali L, Andreassi MG, Foffa I, Spadoni I, Vano E, Picano E. Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart. 2010 Feb;96(4):269-74. doi: 10.1136/hrt.2008.160309. Epub 2009 Aug 16. — View Citation

Andreassi MG, Ait-Ali L, Botto N, Manfredi S, Mottola G, Picano E. Cardiac catheterization and long-term chromosomal damage in children with congenital heart disease. Eur Heart J. 2006 Nov;27(22):2703-8. Epub 2006 May 22. — View Citation

Badano LP, Miglioranza MH, Edvardsen T, Colafranceschi AS, Muraru D, Bacal F, Nieman K, Zoppellaro G, Marcondes Braga FG, Binder T, Habib G, Lancellotti P; Document reviewers. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging. 2015 Sep;16(9):919-48. doi: 10.1093/ehjci/jev139. Epub 2015 Jul 2. Review. — View Citation

Beels L, Bacher K, De Wolf D, Werbrouck J, Thierens H. gamma-H2AX foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization: are we underestimating radiation risks? Circulation. 2009 Nov 10;120(19):1903-9. doi: 10.1161/CIRCULATIONAHA.109.880385. Epub 2009 Oct 26. — View Citation

Dayton JD, Kanter KR, Vincent RN, Mahle WT. Cost-effectiveness of pediatric heart transplantation. J Heart Lung Transplant. 2006 Apr;25(4):409-15. Epub 2006 Feb 8. — View Citation

Hsu DT, Pearson GD. Heart failure in children: part I: history, etiology, and pathophysiology. Circ Heart Fail. 2009 Jan;2(1):63-70. doi: 10.1161/CIRCHEARTFAILURE.108.820217. — View Citation

Johnson JN, Hornik CP, Li JS, Benjamin DK Jr, Yoshizumi TT, Reiman RE, Frush DP, Hill KD. Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation. 2014 Jul 8;130(2):161-7. doi: 10.1161/CIRCULATIONAHA.113.005425. Epub 2014 Jun 9. — View Citation

Kellman P, Arai AE. Cardiac imaging techniques for physicians: late enhancement. J Magn Reson Imaging. 2012 Sep;36(3):529-42. doi: 10.1002/jmri.23605. Review. — View Citation

Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012 Sep 10;14:63. doi: 10.1186/1532-429X-14-63. — View Citation

Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, Addonizio LJ, Lal AK, Lamour JM, Miller EM, Thrush PT, Czachor JD, Razoky H, Hill A, Lipshultz SE. Pediatric Cardiomyopathies. Circ Res. 2017 Sep 15;121(7):855-873. doi: 10.1161/CIRCRESAHA.116.309386. Review. — View Citation

Lipshultz SE, Cochran TR, Briston DA, Brown SR, Sambatakos PJ, Miller TL, Carrillo AA, Corcia L, Sanchez JE, Diamond MB, Freundlich M, Harake D, Gayle T, Harmon WG, Rusconi PG, Sandhu SK, Wilkinson JD. Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol. 2013 Nov;9(6):817-48. doi: 10.2217/fca.13.66. Review. — View Citation

Mavrogeni S, Bratis K, Georgakopoulos D, Karanasios E, Kolovou G, Pavlides G, Papadopoulos G. Evaluation of myocarditis in a pediatric population using cardiovascular magnetic resonance and endomyocardial biopsy. Int J Cardiol. 2012 Oct 18;160(3):192-5. doi: 10.1016/j.ijcard.2011.04.019. Epub 2011 May 10. — View Citation

McGuirt D, Mazal J, Rogers T, Faranesh AZ, Schenke W, Stine A, Grant L, Lederman RJ. X-ray Fused With Magnetic Resonance Imaging to Guide Endomyocardial Biopsy of a Right Ventricular Mass. Radiol Technol. 2016 Jul;87(6):622-6. — View Citation

McKenna WJ, Maron BJ, Thiene G. Classification, Epidemiology, and Global Burden of Cardiomyopathies. Circ Res. 2017 Sep 15;121(7):722-730. doi: 10.1161/CIRCRESAHA.117.309711. Review. — View Citation

Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017 Oct 9;19(1):75. doi: 10.1186/s12968-017-0389-8. Erratum in: J Cardiovasc Magn Reson. 2018 Feb 7;20(1):9. — View Citation

Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB; Society for Cardiovascular Magnetic Resonance Imaging; Cardiovascular Magnetic Resonance Working Group of the European Society of Cardiology. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013 Oct 14;15:92. doi: 10.1186/1532-429X-15-92. Review. — View Citation

Olivieri L, Cross R, O'Brien KJ, Xue H, Kellman P, Hansen MS. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children. Pediatr Radiol. 2016 Jun;46(7):983-90. doi: 10.1007/s00247-016-3553-7. Epub 2016 Feb 17. — View Citation

Parsai C, O'Hanlon R, Prasad SK, Mohiaddin RH. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies. J Cardiovasc Magn Reson. 2012 Aug 2;14:54. doi: 10.1186/1532-429X-14-54. Review. — View Citation

Piehler KM, Wong TC, Puntil KS, Zareba KM, Lin K, Harris DM, Deible CR, Lacomis JM, Czeyda-Pommersheim F, Cook SC, Kellman P, Schelbert EB. Free-breathing, motion-corrected late gadolinium enhancement is robust and extends risk stratification to vulnerable patients. Circ Cardiovasc Imaging. 2013 May 1;6(3):423-32. doi: 10.1161/CIRCIMAGING.112.000022. Epub 2013 Apr 18. — View Citation

Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, Schenke WH, Wright VJ, Grant LP, Kellman P, Kocaturk O, Lederman RJ. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J. 2013 Feb;34(5):380-9. doi: 10.1093/eurheartj/ehs189. Epub 2012 Aug 1. — View Citation

Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging. 2009 Nov;2(11):1321-31. doi: 10.1016/j.jcmg.2009.09.002. Review. — View Citation

Singh V, Mendirichaga R, Savani GT, Rodriguez A, Blumer V, Elmariah S, Inglessis-Azuaje I, Palacios I. Comparison of Utilization Trends, Indications, and Complications of Endomyocardial Biopsy in Native Versus Donor Hearts (from the Nationwide Inpatient Sample 2002 to 2014). Am J Cardiol. 2018 Feb 1;121(3):356-363. doi: 10.1016/j.amjcard.2017.10.021. Epub 2017 Oct 31. — View Citation

Subherwal S, Kobashigawa JA, Cogert G, Patel J, Espejo M, Oeser B. Incidence of acute cellular rejection and non-cellular rejection in cardiac transplantation. Transplant Proc. 2004 Dec;36(10):3171-2. — View Citation

Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH, Shah S, Greiser A, Kellman P, Arai AE. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 2012 Jun;5(6):596-603. doi: 10.1016/j.jcmg.2012.01.016. — View Citation

Wagner K, Oliver MC, Boyle GJ, Miller SA, Law YM, Pigula F, Webber SA. Endomyocardial biopsy in pediatric heart transplant recipients: a useful exercise? (Analysis of 1,169 biopsies). Pediatr Transplant. 2000 Aug;4(3):186-92. — View Citation

* Note: There are 26 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Correlate MRI imaging results to biopsy results Correlate MRI imaging with endomyocardial biopsy Correlate MRI imaging sequences that can detect inflammation and fibrosis to quantities of inflammation and fibrosis seen on biopsy specimens taken from the same region. At the end of each catheterization procedure through study completion,up to 5 years
Secondary Compare yield of biopsy specimen collection using x-ray vs x-ray fused MRI images To compare the accuracy and yield of biopsy specimens collected for detection of rejection by using standard of care, unguided x-ray imaging for the biopsy to the accuracy and yield results of specimens collected using x-ray fused with MR imaging overlay for guidance towards "hotspots" of fibrosis and inflammation. At the end of each catheterization procedure through study completion,up to 5 years
Secondary Radiation exposure To compare radiation exposure in this cohort of subjects (pre and post heart transplant) with recent historical controls undergoing matched invasive cardiology procedures at Children's National Medical Center prior to use of MR-guided cardiac catheterization. At the end of each catheterization procedure through study completion,up to 5 years
See also
  Status Clinical Trial Phase
Recruiting NCT05196659 - Collaborative Quality Improvement (C-QIP) Study N/A
Recruiting NCT05650307 - CV Imaging of Metabolic Interventions
Recruiting NCT05654272 - Development of CIRC Technologies
Active, not recruiting NCT05896904 - Clinical Comparison of Patients With Transthyretin Cardiac Amyloidosis and Patients With Heart Failure With Reduced Ejection Fraction N/A
Completed NCT05077293 - Building Electronic Tools To Enhance and Reinforce Cardiovascular Recommendations - Heart Failure
Recruiting NCT05631275 - The Role of Bioimpedance Analysis in Patients With Chronic Heart Failure and Systolic Ventricular Dysfunction
Enrolling by invitation NCT05564572 - Randomized Implementation of Routine Patient-Reported Health Status Assessment Among Heart Failure Patients in Stanford Cardiology N/A
Enrolling by invitation NCT05009706 - Self-care in Older Frail Persons With Heart Failure Intervention N/A
Recruiting NCT04177199 - What is the Workload Burden Associated With Using the Triage HF+ Care Pathway?
Terminated NCT03615469 - Building Strength Through Rehabilitation for Heart Failure Patients (BISTRO-STUDY) N/A
Recruiting NCT06340048 - Epicardial Injection of hiPSC-CMs to Treat Severe Chronic Ischemic Heart Failure Phase 1/Phase 2
Recruiting NCT05679713 - Next-generation, Integrative, and Personalized Risk Assessment to Prevent Recurrent Heart Failure Events: the ORACLE Study
Completed NCT04254328 - The Effectiveness of Nintendo Wii Fit and Inspiratory Muscle Training in Older Patients With Heart Failure N/A
Completed NCT03549169 - Decision Making for the Management the Symptoms in Adults of Heart Failure N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Enrolling by invitation NCT05538611 - Effect Evaluation of Chain Quality Control Management on Patients With Heart Failure
Recruiting NCT04262830 - Cancer Therapy Effects on the Heart
Completed NCT06026683 - Conduction System Stimulation to Avoid Left Ventricle Dysfunction N/A
Withdrawn NCT03091998 - Subcu Administration of CD-NP in Heart Failure Patients With Left Ventricular Assist Device Support Phase 1
Recruiting NCT05564689 - Absolute Coronary Flow in Patients With Heart Failure With Reduced Ejection Fraction and Left Bundle Branch Block With Cardiac Resynchronization Therapy