Healthy Clinical Trial
Official title:
Dynamic Connectivity Under Metabolic Constraints
In this study, we investigate the impact of insulin resistance on the acceleration of brain aging, and test whether increased neuron insulin resistance can be counteracted by utilization of alternate metabolic pathways (e.g., ketones rather than glucose). This study has three Arms, which together provide synergistic data. For all three Arms, subjects are tested in a within-subjects design that consists of 2-3 testing sessions, 1-14 days apart, and counter-balanced for order. During each session we measure the impact of fuel (glucose in one session, ketones in the other) on brain metabolism and associated functioning. For Arms 1-2, our primary experimental measure is functional magnetic resonance imaging (fMRI), which we will use to trace the self-organization of functional networks following changes in energy supply and demand. Arm 1 tests the impact of endogenous ketones produced by switching to a low carbohydrate diet, while Arm 2 tests the impact of exogenous ketones consumed as a nutritional supplement. For Arm 3, we use simultaneous magnetic resonance spectroscopy/positron-emission tomography (MR/PET) to quantify the impact of exogenous ketones on production of glutamate and GABA, key neurotransmitters. Subjects will be given the option to participate in more than one of the Arms, but doing so is not expected nor required. Prior to scans, subjects will receive a clinician-administered History and Physical (H&P), which includes vital signs, an oral glucose tolerance test (OGTT), and the comprehensive metabolic blood panel. These will be used to assess diabetes, kidney disease, and electrolytes. If subjects pass screening, they will be provided the option to participate in one or more Arms, which include neuroimaging. To provide a quantitative measure of time-varying metabolic activity throughout the scan, based upon quantitative models of glucose and ketone regulation, as well as to be able to implement safety stopping rules (see below), we will obtain pin-prick blood samples three times: prior to the scan, following consumption of the glucose or ketone drink, and following completion of the scan. To assess effects of increased metabolic demand, we measure brain response to cognitive load, transitioning from resting-state to spatial reasoning through a Tetris task. To assess effects of increased metabolic supply, we measure brain response to glucose or ketone bolus.
Status | Recruiting |
Enrollment | 80 |
Est. completion date | September 2023 |
Est. primary completion date | September 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 79 Years |
Eligibility | Exclusion Criteria: - claustrophobia - history of neurological disease, heart attack, stroke, kidney disease, or myxedema - chronic usage of alcohol - current usage of psychotropic medication - Type 1 diabetes mellitus - Regular consumption of insulin, Metformin® or other medications (statins, NSAIDs, beta-blockers, glucocorticoids) that affect glucose and/or insulin utilization. - difficulty swallowing - pregnancy - breastfeeding - For PET: research imaging-related radiation exposure that exceeds current MGH Radiology Radiation Safety Commitee guidelines. Inclusion Criteria: - BMI < 30 - 20/20 vision or correctable to 20/20 with contact lenses - MRI compatible - For PET with Optional 150 ml Blood Sampling Only: Must weigh at least 110 lbs to minimize risks per PHRC guidelines. |
Country | Name | City | State |
---|---|---|---|
United States | Martinos Center for Biomedical Research, Building 149 | Charlestown | Massachusetts |
United States | Bioengineering Building , Stony Brook University | Stony Brook | New York |
Lead Sponsor | Collaborator |
---|---|
Massachusetts General Hospital | Martinos Center for Biomedical Imaging |
United States,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | fMRI stability measures: endogenous ketones vs exogenous glucose | BOLD signal measurements will be obtained at baseline and during either a glycolytic, fasting, or ketotic state. We hypothesize that ketones provide the brain with greater baseline access to energy, particularly as individuals age and become insulin resistant, and that subsequent ingestion of glucose disrupts this access. We also expect that these effects will become more pronounced when metabolic demands are higher (i.e., task vs resting-state). | Within two weeks of enrollment completion | |
Primary | fMRI stability measures: exogenous ketones vs exogenous glucose | BOLD signal measurements will be obtained at baseline and following either a glucose or ketone supplement. We hypothesize that ketones provide the brain with greater baseline access to energy, particularly as individuals age and become insulin resistant, and that subsequent ingestion of glucose disrupts this access. We also expect that these effects will become more pronounced when metabolic demands are higher (i.e., task vs resting-state). | Within two weeks of enrollment completion | |
Primary | PET: glucose uptake and neurotransmitter production with and without ketone supplement | During MR/PET scans, continuous FDG infusion will be used to measure glucose uptake both during rest and task. Magnetic resonance spectroscopy will be used to measure production of neurotransmitters. In individuals who are insulin resistant, we expect to find diminished neurotransmitter levels that will then be replenished through exogenous ketones. We also hypothesize that these effects will become more pronounced when metabolic demands are higher (i.e., task vs resting-state). | Within two weeks of enrollment completion | |
Secondary | Cognitive performance will be assessed and correlated with brain stability values and insulin resistance levels | Within two weeks of enrollment completion |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06052553 -
A Study of TopSpin360 Training Device
|
N/A | |
Completed |
NCT05511077 -
Biomarkers of Oat Product Intake: The BiOAT Marker Study
|
N/A | |
Recruiting |
NCT04632485 -
Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
|
||
Completed |
NCT05931237 -
Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults
|
N/A | |
Terminated |
NCT04556032 -
Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women
|
N/A | |
Completed |
NCT04527718 -
Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers
|
Phase 1 | |
Completed |
NCT04065295 -
A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225
|
Phase 1 | |
Completed |
NCT04998695 -
Health Effects of Consuming Olive Pomace Oil
|
N/A | |
Completed |
NCT04107441 -
AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects
|
Phase 1 | |
Completed |
NCT01442831 -
Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects
|
Phase 1 | |
Terminated |
NCT05934942 -
A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood
|
Phase 1 | |
Recruiting |
NCT05525845 -
Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI
|
N/A | |
Completed |
NCT05515328 -
A Study in Healthy Men to Test How BI 685509 is Processed in the Body
|
Phase 1 | |
Completed |
NCT05030857 -
Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects
|
Phase 1 | |
Completed |
NCT04967157 -
Cognitive Effects of Citicoline on Attention in Healthy Men and Women
|
N/A | |
Recruiting |
NCT04494269 -
A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls
|
Phase 1 | |
Recruiting |
NCT04714294 -
Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers
|
Phase 1 | |
Completed |
NCT04539756 -
Writing Activities and Emotions
|
N/A | |
Recruiting |
NCT04098510 -
Concentration of MitoQ in Human Skeletal Muscle
|
N/A | |
Completed |
NCT03308110 -
Bioavailability and Food Effect Study of Two Formulations of PF-06650833
|
Phase 1 |