Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05396079
Other study ID # 1
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date March 28, 2023
Est. completion date September 15, 2023

Study information

Verified date March 2023
Source Harokopio University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Cardiovascular disease (CVD), a cluster of disorders that affect heart and blood vessels, is the leading cause of morbidity and mortality around the world and is responsible for 17.9 million deaths annually worldwide. CVD risk factors can be modifiable (nutrition, physical activity, obesity, smoking, hyperlipidemia, hypertension and diabetes) and non-modifiable (age, gender, ethnicity, family history and socioeconomic status). Chronic exposure to CVD risk factors induces oxidative stress and promotes inflammation. In addition, endothelial cells in response to the inflammatory reaction secrete growth factors, leading to the destruction of vascular endothelium and promoting atherogenesis. Oxidative stress refers to the imbalance between anti-oxidant and pro-oxidant compounds, with predominance of the pro-oxidant ones. Reactive Oxygen Species overproduction has been implicated in pathogenesis and complications of numerous diseases including diabetes, cardiovascular diseases, cancer, neurodegenerative diseases and chronic kidney disease. Moreover, endothelium consists of a single layer of endothelial cells; it is the natural barrier between blood and tissues and also an endocrine organ. It plays a key role in vascular homeostasis by maintaining a balance between vasodilation and vasoconstriction and is responsible for fluid filtration, blood vessel tone, hormone trafficking, hemostasis, regulation of blood flow and growth of blood vessels. Thus, reductions in endothelial function are detrimental and predict and precede the development of overt CVD. Sesame belongs to Pedaliaceae family and can be consumed in different forms such as seeds, oil or tahini, i.e., a 100 % peeled, ground and roasted sesame paste. Tahini is rich in polyunsaturated fatty acids, proteins, vitamin E and lignans, such as sesamin, sesamolin and sesamol. Recent studies have indicated that tahini consumption can lower blood pressure and pulse rate and improve endothelial function and glycemic response in healthy males postprandially. However, only two studies are available in the current literature concerning the effect on diabetes, one of them in patients with type 2 diabetes and one in diabetic animal model. Thus, the aim of the present study is to investigate the effect of tahini consumption on oxidative stress, blood pressure, endothelial function and arterial stiffness in patients with type 2 diabetes postprandially.


Description:

Cardiovascular disease (CVD), a cluster of disorders that affect heart and blood vessels, is the leading cause of morbidity and mortality around the world and is responsible for 17.9 million deaths annually worldwide. CVD includes coronary heart disease, peripheral arterial disease, cerebrovascular disease, rheumatic heart disease, congenital heart disease, deep vein thrombosis and pulmonary embolism. CVD risk factors can be modifiable (nutrition, physical activity, obesity, smoking, hyperlipidemia, hypertension and diabetes) and non-modifiable (age, gender, ethnicity, family history and socioeconomic status). Chronic exposure to CVD risk factors induces oxidative stress and promotes inflammation. In addition, endothelial cells in response to the inflammatory reaction secrete growth factors, leading to the destruction of vascular endothelium and promoting atherogenesis. Oxidative stress refers to the imbalance between anti-oxidant and pro-oxidant compounds, with predominance of the pro-oxidant ones. These compounds are also called Reactive Oxygen Species (ROS) or free radicals and are unstable atoms or molecules. Their generation, as products of normal cellular metabolism, occurs naturally by endogenous sources (e.g. mitochondria, peroxisomes and endoplasmic reticulum) through enzymatic and non-enzymatic reactions. Furthermore, exogenous sources implicated in free radical production are air pollution, alcohol consumption, tobacco smoking, ultraviolet light exposure, industrial solvents and others. Free radical production is regulated by the well-organized human endogenous enzymatic and non-enzymatic antioxidant system, along with the exogenous antioxidants found in food. However, in some cases antioxidant system fails to eliminate ROS overproduction and can consequently induce serious damage to important for life biomolecules (DNA, lipids, proteins), leading to cell injury and death. Thus, ROS overproduction has been implicated in pathogenesis and complications of numerous diseases including diabetes, cardiovascular diseases, cancer, neurodegenerative diseases and chronic kidney disease. Moreover, endothelium consists of a single layer of endothelial cells; it is the natural barrier between blood and tissues and also an endocrine organ. It plays a key role in vascular homeostasis by maintaining a balance between vasodilation and vasoconstriction. Moreover, vascular endothelium is responsible for fluid filtration, blood vessel tone, hormone trafficking, hemostasis, regulation of blood flow and growth of blood vessels. Thus, reductions in endothelial function are detrimental and predict and precede the development of overt CVD. Sesame belongs to Pedaliaceae family and can be consumed in different forms such as seeds, oil or tahini, i.e., a 100 % peeled, ground and roasted sesame paste. Sesame seeds are rich in polyunsaturated fatty acids (PUFAs), proteins, vitamin E and lignans, such as sesamin, sesamolin and sesamol. Recent studies have highlighted the antioxidant, antihypertensive, hypolipidemic and appetite control properties of sesame seeds and sesame oil. Moreover, few studies have investigated the effect of sesame consumption on blood pressure, endothelial function and arterial stiffness in human population. According to a metanalysis, sesame consumed in form of seed, oil, capsule or bar decreased both systolic blood pressure (SBP) and diastolic blood pressure (DBP), while sesame oil consumption was found to improve endothelial function both in the postprandial state and after long term consumption in hypertensive men. Regarding the consumption of tahini and its effect on human health, only a few studies are available in the current literature. The most recent of them have indicated that tahini consumption can lower blood pressure and pulse rate and improve endothelial function and glycemic response in healthy males postprandially. However, only two studies are available in the current literature concerning the effect on diabetes, one of them in patients with type 2 diabetes and one in diabetic animal model. Thus, the aim of the present study is to investigate the effect of tahini consumption on oxidative stress, blood pressure, endothelial function and arterial stiffness in patients with type 2 diabetes postprandially.


Recruitment information / eligibility

Status Completed
Enrollment 12
Est. completion date September 15, 2023
Est. primary completion date June 15, 2023
Accepts healthy volunteers No
Gender All
Age group 40 Years to 70 Years
Eligibility Inclusion Criteria: - minimum period from diagnosis three years - good glycemic control (HbA1c <7%) - taking a stable anti-diabetic treatment for the last 3 months (anti-diabetic tablets only) Exclusion Criteria: -

Study Design


Intervention

Other:
tahini and bread
Fifthy grams of tahini with 2 slices of white bread
margarine, cheese and bread
46 g of margarine and 38 g of cheese with 2 slices of white bread

Locations

Country Name City State
Greece Panagiotis Kanellos Athens

Sponsors (2)

Lead Sponsor Collaborator
Harokopio University National and Kapodistrian University of Athens

Country where clinical trial is conducted

Greece, 

References & Publications (25)

Alipoor B, Haghighian MK, Sadat BE, Asghari M. Effect of sesame seed on lipid profile and redox status in hyperlipidemic patients. Int J Food Sci Nutr. 2012 Sep;63(6):674-8. doi: 10.3109/09637486.2011.652077. Epub 2012 Jan 23. — View Citation

Baxevanis, G.K., Sakketou, EK.I., Tentolouris, N.K. et al. Tahini consumption improves metabolic and antioxidant status biomarkers in the postprandial state in healthy males. Eur Food Res Technol 247, 2721-2728 (2021). https://doi.org/10.1007/s00217-021-03828-5

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012 Jan;5(1):9-19. doi: 10.1097/WOX.0b013e3182439613. Epub 2012 Jan 13. — View Citation

Gouveia Lde A, Cardoso CA, de Oliveira GM, Rosa G, Moreira AS. Effects of the Intake of Sesame Seeds (Sesamum indicum L.) and Derivatives on Oxidative Stress: A Systematic Review. J Med Food. 2016 Apr;19(4):337-45. doi: 10.1089/jmf.2015.0075. — View Citation

Hirata F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H. Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis. 1996 Apr 26;122(1):135-36. doi: 10.1016/0021-9150(95)05769-2. No abstract available. — View Citation

Kamal-Eldin A, Frank J, Razdan A, Tengblad S, Basu S, Vessby B. Effects of dietary phenolic compounds on tocopherol, cholesterol, and fatty acids in rats. Lipids. 2000 Apr;35(4):427-35. doi: 10.1007/s11745-000-541-y. — View Citation

Karatzi K, Stamatelopoulos K, Lykka M, Mantzouratou P, Skalidi S, Zakopoulos N, Papamichael C, Sidossis LS. Sesame oil consumption exerts a beneficial effect on endothelial function in hypertensive men. Eur J Prev Cardiol. 2013 Apr;20(2):202-8. doi: 10.1177/2047487312437625. Epub 2012 Jan 25. — View Citation

Khalesi S, Paukste E, Nikbakht E, Khosravi-Boroujeni H. Sesame fractions and lipid profiles: a systematic review and meta-analysis of controlled trials. Br J Nutr. 2016 Mar 14;115(5):764-73. doi: 10.1017/S0007114515005012. Epub 2016 Jan 13. — View Citation

Khosravi-Boroujeni H, Nikbakht E, Natanelov E, Khalesi S. Can sesame consumption improve blood pressure? A systematic review and meta-analysis of controlled trials. J Sci Food Agric. 2017 Aug;97(10):3087-3094. doi: 10.1002/jsfa.8361. Epub 2017 May 12. — View Citation

Kruger-Genge A, Blocki A, Franke RP, Jung F. Vascular Endothelial Cell Biology: An Update. Int J Mol Sci. 2019 Sep 7;20(18):4411. doi: 10.3390/ijms20184411. — View Citation

Kumar, S., & Pandey, A. (2015). Free Radicals: Health Implications and their Mitigation by Herbals. British Journal Of Medicine And Medical Research, 7(6), 438-457. doi: 10.9734/bjmmr/2015/16284

Namiki M. Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr. 2007;47(7):651-73. doi: 10.1080/10408390600919114. — View Citation

Neves Ribeiro D, Goncalves Alfenas Rde C, Bressan J, Brunoro Costa NM. The effect of oilseed consumption on appetite and on the risk of developing type 2 diabetes mellitus. Nutr Hosp. 2013 Mar-Apr;28(2):296-305. doi: 10.3305/nh.2013.28.2.6309. — View Citation

Park KH, Park WJ. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J Korean Med Sci. 2015 Sep;30(9):1213-25. doi: 10.3346/jkms.2015.30.9.1213. Epub 2015 Aug 13. — View Citation

Pathak N, Rai AK, Kumari R, Bhat KV. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev. 2014 Jul;8(16):147-55. doi: 10.4103/0973-7847.134249. — View Citation

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015 Jan;30(1):11-26. doi: 10.1007/s12291-014-0446-0. Epub 2014 Jul 15. — View Citation

Raeisi-Dehkordi, H., Mohammadi, M., Moghtaderi, F., & Salehi-Abargouei, A. (2018). Do sesame seed and its products affect body weight and composition? A systematic review and meta-analysis of controlled clinical trials. Journal Of Functional Foods, 49, 324-332. doi: 10.1016/j.jff.2018.08.036

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013 Nov 9;9(10):1057-69. doi: 10.7150/ijbs.7502. eCollection 2013. — View Citation

Ravarotto V, Simioni F, Pagnin E, Davis PA, Calo LA. Oxidative stress - chronic kidney disease - cardiovascular disease: A vicious circle. Life Sci. 2018 Oct 1;210:125-131. doi: 10.1016/j.lfs.2018.08.067. Epub 2018 Aug 31. — View Citation

Sakketou EI, Baxevanis GK, Tentolouris NK, Konstantonis GD, Karathanos VT, Fragkiadakis GA, Kanellos PT. Tahini consumption affects blood pressure and endothelial function in healthy males. J Hum Hypertens. 2022 Dec;36(12):1128-1132. doi: 10.1038/s41371-021-00624-2. Epub 2021 Oct 27. — View Citation

Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180-3. doi: 10.1016/j.redox.2015.01.002. Epub 2015 Jan 3. — View Citation

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757. Epub 2020 Jan 29. — View Citation

Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44(4):275-95. doi: 10.1080/10408690490468489. — View Citation

Wu WH, Kang YP, Wang NH, Jou HJ, Wang TA. Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women. J Nutr. 2006 May;136(5):1270-5. doi: 10.1093/jn/136.5.1270. — View Citation

Zoumpoulakis, P., Sinanoglou, V., Batrinou, A., Strati, I., Miniadis-Meimaroglou, S., & Sflomos, K. (2012). A combined methodology to detect ?-irradiated white sesame seeds and evaluate the effects on fat content, physicochemical properties and protein allergenicity. Food Chemistry, 131(2), 713-721. doi: 10.1016/j.foodchem.2011.09.049

* Note: There are 25 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Concentration of urinary 8-iso-prostaglandin F2a We will measure the concentration of urinary 8-iso-prostaglandin F2a by using Elisa kit Four hours after consumption of both meals
Primary Assessment of Flow-Mediated Dilatation We will assess the FMD by high-resolution ultrasound imaging Four hours after consumption of both meals
See also
  Status Clinical Trial Phase
Active, not recruiting NCT05666479 - CGM Monitoring in T2DM Patients Undergoing Orthopaedic Replacement Surgery
Completed NCT05647083 - The Effect of Massage on Diabetic Parameters N/A
Active, not recruiting NCT05661799 - Persistence of Physical Activity in People With Type 2 Diabetes Over Time. N/A
Completed NCT03686722 - Effect of Co-administration of Metformin and Daclatasvir on the Pharmacokinetis and Pharmacodynamics of Metformin Phase 1
Completed NCT02836704 - Comparison of Standard vs Higher Starting Dose of Insulin Glargine in Chinese Patients With Type 2 Diabetes (Glargine Starting Dose) Phase 4
Completed NCT01819129 - Efficacy and Safety of FIAsp Compared to Insulin Aspart in Combination With Insulin Glargine and Metformin in Adults With Type 2 Diabetes Phase 3
Completed NCT04562714 - Impact of Flash Glucose Monitoring in People With Type 2 Diabetes Using Non-Insulin Antihyperglycemic Therapy N/A
Completed NCT02009488 - Treatment Differences Between Canagliflozin and Placebo in Insulin Secretion in Subjects With Type 2 Diabetes Mellitus (T2DM) Phase 1
Completed NCT05896319 - Hyaluronic Acid Treatment of the Post-extraction Tooth Socket Healing in Subjects With Diabetes Mellitus Type 2 N/A
Recruiting NCT05598203 - Effect of Nutrition Education Groups in the Treatment of Patients With Type 2 Diabetes N/A
Completed NCT05046873 - A Research Study Looking Into Blood Levels of Semaglutide and NNC0480-0389 When Given in the Same Injection or in Two Separate Injections in Healthy People Phase 1
Terminated NCT04090242 - Impact of App Based Diabetes Training Program in Conjunction With the BD Nano Pen Needle in People With T2 Diabetes N/A
Completed NCT04030091 - Pulsatile Insulin Infusion Therapy in Patients With Type 1 and Type 2 Diabetes Mellitus Phase 4
Completed NCT03604224 - A Study to Observe Clinical Effectiveness of Canagliflozin 300 mg Containing Treatment Regimens in Indian Type 2 Diabetes Participants With BMI>25 kg/m^2, in Real World Clinical Setting
Completed NCT03620357 - Continuous Glucose Monitoring & Management In Type 2 Diabetes (T2D) N/A
Completed NCT01696266 - An International Survey on Hypoglycaemia Among Insulin-treated Patients With Diabetes
Completed NCT03620890 - Detemir Versus NPH for Type 2 Diabetes Mellitus in Pregnancy Phase 4
Withdrawn NCT05473286 - A Research Study Looking at How Oral Semaglutide Works in People With Type 2 Diabetes in Germany, as Part of Local Clinical Practice
Not yet recruiting NCT05029804 - Effect of Walking Exercise Training on Adherence to Disease Management and Metabolic Control in Diabetes N/A
Completed NCT04531631 - Effects of Dorzagliatin on 1st Phase Insulin and Beta-cell Glucose Sensitivity in T2D and Monogenic Diabetes Phase 2