Coronary Artery Disease Clinical Trial
— CORO-CTAIOMICSOfficial title:
Peri-luminal COROnary CTa AI-driven radiOMICS to Identify Vulnerable Patients
CAD is a leading cause of mortality in Europe. cCTA is recommended to rule out obstructive CAD, but, in most patients, it shows non-obstructive CAD. The management of these patients is unclear due to lack of reproducible quantitative measurement, beyond stenosis severity, capable to assess the risk of disease progression towards developing MACEs. To improve identification and phenotypization of patients at high risk of disease progression, we propose the application of artificial intelligence algorithms to cCTA images to automatically extract periluminal radiomics features to characterize the atherosclerotic process. By leveraging machine-learning empowered radiomics we aim to improve patients' risk stratification in a robust, quantitative and reproducible fashion. By developing a novel quantitative AI based cCTA measure, we expect to provide a risk score capable to identify patients who can benefit of a more aggressive medical treatment and management, thus improving outcome
Status | Recruiting |
Enrollment | 2190 |
Est. completion date | May 20, 2025 |
Est. primary completion date | May 20, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Patients with CT performed for CAD assessment between 2017 and 2019. 2. Follow-up duration of at least 4 years. Exclusion Criteria: 1. Refusal to participate in the study 2. Age <18 years old 3. History of previous coronary revascularization 4. Presence of other cardiovascular comorbidities (e.g. inflammatory cardiomyopathy, valvular cardiomyopathy, idiopathic dilated cardiomyopathy, infiltrative cardiomyopathy) |
Country | Name | City | State |
---|---|---|---|
Italy | IRCCS San Raffaele | Milano |
Lead Sponsor | Collaborator |
---|---|
IRCCS San Raffaele | Ministry of Health, Italy |
Italy,
Bardosi ZR, Dejaco D, Santer M, Kloppenburg M, Mangesius S, Widmann G, Ganswindt U, Rumpold G, Riechelmann H, Freysinger W. Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification. Cancers (Basel). 2022 Jan 18;14(3):477. doi: 10.3390/cancers14030477. — View Citation
Brown PJ, Zhong J, Frood R, Currie S, Gilbert A, Appelt AL, Sebag-Montefiore D, Scarsbrook A. Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT. Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2790-2799. doi: 10.1007/s00259-019-04495-1. Epub 2019 Sep 4. — View Citation
Cho HH, Lee HY, Kim E, Lee G, Kim J, Kwon J, Park H. Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans. Commun Biol. 2021 Nov 12;4(1):1286. doi: 10.1038/s42003-021-02814-7. — View Citation
Emerson RW, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L, Constantino JN, Shen MD, Swanson MR, Elison JT, Kandala S, Estes AM, Botteron KN, Collins L, Dager SR, Evans AC, Gerig G, Gu H, McKinstry RC, Paterson S, Schultz RT, Styner M; IBIS Network; Schlaggar BL, Pruett JR Jr, Piven J. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med. 2017 Jun 7;9(393):eaag2882. doi: 10.1126/scitranslmed.aag2882. — View Citation
Goeller M, Achenbach S, Herrmann N, Bittner DO, Kilian T, Dey D, Raaz-Schrauder D, Marwan M. Pericoronary adipose tissue CT attenuation and its association with serum levels of atherosclerosis-relevant inflammatory mediators, coronary calcification and major adverse cardiac events. J Cardiovasc Comput Tomogr. 2021 Sep-Oct;15(5):449-454. doi: 10.1016/j.jcct.2021.03.005. Epub 2021 Apr 3. — View Citation
Kolossvary M, Karady J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B, Maurovich-Horvat P. Radiomic Features Are Superior to Conventional Quantitative Computed Tomographic Metrics to Identify Coronary Plaques With Napkin-Ring Sign. Circ Cardiovasc Imaging. 2017 Dec;10(12):e006843. doi: 10.1161/CIRCIMAGING.117.006843. — View Citation
Lin A, Kolossvary M, Yuvaraj J, Cadet S, McElhinney PA, Jiang C, Nerlekar N, Nicholls SJ, Slomka PJ, Maurovich-Horvat P, Wong DTL, Dey D. Myocardial Infarction Associates With a Distinct Pericoronary Adipose Tissue Radiomic Phenotype: A Prospective Case-Control Study. JACC Cardiovasc Imaging. 2020 Nov;13(11):2371-2383. doi: 10.1016/j.jcmg.2020.06.033. Epub 2020 Aug 26. — View Citation
Nerlekar N, Ha FJ, Cheshire C, Rashid H, Cameron JD, Wong DT, Seneviratne S, Brown AJ. Computed Tomographic Coronary Angiography-Derived Plaque Characteristics Predict Major Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Circ Cardiovasc Imaging. 2018 Jan;11(1):e006973. doi: 10.1161/CIRCIMAGING.117.006973. — View Citation
Riley RD, Snell KI, Ensor J, Burke DL, Harrell FE Jr, Moons KG, Collins GS. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med. 2019 Mar 30;38(7):1276-1296. doi: 10.1002/sim.7992. Epub 2018 Oct 24. Erratum In: Stat Med. 2019 Dec 30;38(30):5672. — View Citation
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015 Mar 4;10(3):e0118432. doi: 10.1371/journal.pone.0118432. eCollection 2015. — View Citation
Tzolos E, McElhinney P, Williams MC, Cadet S, Dweck MR, Berman DS, Slomka PJ, Newby DE, Dey D. Repeatability of quantitative pericoronary adipose tissue attenuation and coronary plaque burden from coronary CT angiography. J Cardiovasc Comput Tomogr. 2021 Jan-Feb;15(1):81-84. doi: 10.1016/j.jcct.2020.03.007. Epub 2020 Apr 14. — View Citation
Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics. 2006 Feb 23;7:91. doi: 10.1186/1471-2105-7-91. — View Citation
Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006 Nov-Dec;26(6):565-74. doi: 10.1177/0272989X06295361. — View Citation
* Note: There are 13 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Composite outcome | All-cause mortality, myocardial infarction, due to unstable angina or heart hospitalization failure, late coronary revascularization | 48 months from CCTA |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06030596 -
SPECT Myocardial Blood Flow Quantification for Diagnosis of Ischemic Heart Disease Determined by Fraction Flow Reserve
|
||
Completed |
NCT04080700 -
Korean Prospective Registry for Evaluating the Safety and Efficacy of Distal Radial Approach (KODRA)
|
||
Recruiting |
NCT03810599 -
Patient-reported Outcomes in the Bergen Early Cardiac Rehabilitation Study
|
N/A | |
Recruiting |
NCT06002932 -
Comparison of PROVISIONal 1-stent Strategy With DEB Versus Planned 2-stent Strategy in Coronary Bifurcation Lesions.
|
N/A | |
Not yet recruiting |
NCT06032572 -
Evaluation of the Safety and Effectiveness of the VRS100 System in PCI (ESSENCE)
|
N/A | |
Recruiting |
NCT04242134 -
Drug-coating Balloon Angioplasties for True Coronary Bifurcation Lesions
|
N/A | |
Recruiting |
NCT05308719 -
Nasal Oxygen Therapy After Cardiac Surgery
|
N/A | |
Completed |
NCT04556994 -
Phase 1 Cardiac Rehabilitation With and Without Lower Limb Paddling Effects in Post CABG Patients.
|
N/A | |
Recruiting |
NCT05846893 -
Drug-Coated Balloon vs. Drug-Eluting Stent for Clinical Outcomes in Patients With Large Coronary Artery Disease
|
N/A | |
Recruiting |
NCT06027788 -
CTSN Embolic Protection Trial
|
N/A | |
Recruiting |
NCT05023629 -
STunning After Balloon Occlusion
|
N/A | |
Completed |
NCT04941560 -
Assessing the Association Between Multi-dimension Facial Characteristics and Coronary Artery Diseases
|
||
Completed |
NCT04006288 -
Switching From DAPT to Dual Pathway Inhibition With Low-dose Rivaroxaban in Adjunct to Aspirin in Patients With Coronary Artery Disease
|
Phase 4 | |
Completed |
NCT01860274 -
Meshed Vein Graft Patency Trial - VEST
|
N/A | |
Recruiting |
NCT06174090 -
The Effect of Video Education on Pain, Anxiety and Knowledge Levels of Coronary Bypass Graft Surgery Patients
|
N/A | |
Completed |
NCT03968809 -
Role of Cardioflux in Predicting Coronary Artery Disease (CAD) Outcomes
|
||
Terminated |
NCT03959072 -
Cardiac Cath Lab Staff Radiation Exposure
|
||
Recruiting |
NCT04566497 -
Assessment of Adverse Outcome in Asymptomatic Patients With Prior Coronary Revascularization Who Have a Systematic Stress Testing Strategy Or a Non-testing Strategy During Long-term Follow-up.
|
N/A | |
Recruiting |
NCT05065073 -
Iso-Osmolar vs. Low-Osmolar Contrast Agents for Optical Coherence Tomography
|
Phase 4 | |
Completed |
NCT05096442 -
Compare the Safety and Efficacy of Genoss® DCB and SeQuent® Please NEO in Korean Patients With Coronary De Novo Lesions
|
N/A |