Clinical Trials Logo

Clinical Trial Summary

This is a randomised controlled trial of the blood flow restriction resistance exercise (BFR-RE) for early rehabilitation of chronic obstructive pulmonary disease acute exacerbation (COPDAE) in the Haven of Hope Hospital.

BFR-RE was invented by Dr. Yoshiaki Sato in Japan 40 years ago. This exercise was newly introduced to the Physiotherapy Department of Haven of Hope Hospital in March, 2020 and not a routine common training in Hospital Authority. However, currently the "BFR-device" is in its 3rd generation. Under the guidance of a certified physiotherapist, a "low load intensity" can be used for resistance training to build up muscle mass and strength by applying the device over the thigh to partially limit the blood flow to the distal limb.

BFR-RE is well studied in athletes, elderlies and patients for rehabilitation after orthopaedics surgeries. A large amount of literature reveals BFR-RE with "low load intensity" shows comparable increase of muscle mass as "high load intensity" resistance training and more increase of muscle strength than those only undergoing "low load intensity" resistance training.

The objective of this study is to investigate the additional effects of 2-week BFR-RE in patients with COPDAE on top of the conventional in-patient rehabilitation training. The primary outcome is effect on localized muscle strength. The secondary outcomes include mobility function, systemic muscle strength as reflected by handgrip strength(HGS), health related quality of life, unplanned readmission to acute hospital rate within 1 month for COPDAE.


Clinical Trial Description

Chronic obstructive pulmonary disease (COPD) is a prevalent disease around the world particularly in developed countries. COPD often has frequent admissions for acute exacerbation which increase the risks of mortality. Muscular dysfunction is one of extra-pulmonary morbidity of COPD.

Reduced muscle strength is associated with increased mortality in moderate to severe COPD. However, at least 70% of 1-repetition maximum (1-RM) of weight is needed to achieve muscle growth in resistance training. This might not be feasible particularly to the patients admitted for COPD acute exacerbation (COPDAE).

Blood flow restriction resistance training (BFR-RE), Kaatsu training, was developed by Dr. Yoshiaki Sato more than 40 years ago. The basic physiological mechanism of BFR-RE to increase muscle mass and strength is by metabolite accumulation, e.g. lactate. The metabolites lead to increase of serum growth hormone (GH) which promotes the collagen synthesis for tissue repair and recovery. The surge of GH leads to release of insulin-like growth factor (IGF-1) which is a protein related to muscle growth. IGF-1 contributes the muscle gain, which is a muscular anabolic process, by enhancing satellite cell proliferation.

Concerning growth of muscle mass, BFR-RE leads to a comparable increase when compared to high load resistance exercise (HL-RE). However, concerning increase of muscle strength, BFR-RE is less effective in gain than that in HL- RE but more effective than that in low load resistance exercise (LL-RE) alone. Therefore, BFR-RE can be considered when HL- RE is not advisable. (e.g. frail elderly, post-operative rehabilitation, etc.) BFR-RE is well studied among healthy adult, elderly and musculoskeletal rehabilitation patients, but not in COPDAE patients.

Standardized isotonic knee extension resistance training on alternate day with a load of 15-30% of 1-Repetition Maximum (1-RM) with "BFR-device" will be compared with the control arm having same set of exercise training without the device in COPDAE patient during 2-week of inpatient stay. Referred to previous study with 30% drop out rate estimation, 24 patients for each arm will be needed. Study period will be set to be 9 months or until expected recruitment achieved.

Though there no adverse risk responses were reported in published randomized controlled trials in clinical populations in the literature, there are some expected transient perceptual type responses, e.g. dizziness, limb numbness, perceived exertion, delayed onset muscle soreness. There are no significant risks of complications if BFR-RE is prescribed by certified trainers who have knowledge of appropriate protocols and contraindications to the use of occlusive stimuli.

The effect on muscle strength in COPDAE inpatient, which is not well studied in the literatures, will be the primary outcome of this study. The effect on mobility functions, systemic muscle strength, health related quality of life, unplanned readmission rate within 1 month of discharge for COPDAE, acceptability and feasibility of the BFR-RE will be evaluated as secondary outcomes. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04448236
Study type Interventional
Source Hospital Authority, Hong Kong
Contact chung wai LAU, MBBS
Phone 27038888
Email lcw431@ha.org.hk
Status Recruiting
Phase N/A
Start date June 10, 2020
Completion date April 2021

See also
  Status Clinical Trial Phase
Completed NCT05102305 - A Multi-center,Prospective, OS to Evaluate the Effectiveness of 'NAC' Nebulizer Therapy in COPD (NEWEST)
Completed NCT01867762 - An Effectiveness and Safety Study of Inhaled JNJ 49095397 (RV568) in Patients With Moderate to Severe Chronic Obstructive Pulmonary Disease Phase 2
Recruiting NCT05562037 - Stepped Care vs Center-based Cardiopulmonary Rehabilitation for Older Frail Adults Living in Rural MA N/A
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03089515 - Small Airway Chronic Obstructive Disease Syndrome Following Exposure to WTC Dust N/A
Completed NCT02787863 - Clinical and Immunological Efficiency of Bacterial Vaccines at Adult Patients With Bronchopulmonary Pathology Phase 4
Recruiting NCT05552833 - Pulmonary Adaptive Responses to HIIT in COPD N/A
Recruiting NCT05835492 - A Pragmatic Real-world Multicentre Observational Research Study to Explore the Clinical and Health Economic Impact of myCOPD
Recruiting NCT05631132 - May Noninvasive Mechanical Ventilation (NIV) and/or Continuous Positive Airway Pressure (CPAP) Increase the Bronchoalveolar Lavage (BAL) Salvage in Patients With Pulmonary Diseases? N/A
Completed NCT03244137 - Effects of Pulmonary Rehabilitation on Cognitive Function in Patients With Severe to Very Severe Chronic Obstructive Pulmonary Disease
Not yet recruiting NCT03282526 - Volume Parameters vs Flow Parameters in Assessment of Reversibility in Chronic Obstructive Pulmonary Disease N/A
Completed NCT02546700 - A Study to Evaluate Safety and Efficacy of Lebrikizumab in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 2
Withdrawn NCT04446637 - Acute Bronchodilator Effects of Ipratropium/Levosalbutamol 20/50 mcg Fixed Dose Combination vs Salbutamol 100 mcg Inhaler Plus Ipratropium 20 mcg Inhalation Aerosol Free Combination in Patients With Stable COPD Phase 3
Completed NCT04535986 - A Phase 3 Clinical Trial to Evaluate the Safety and Efficacy of Ensifentrine in Patients With COPD Phase 3
Recruiting NCT05865184 - Evaluation of Home-based Sensor System to Detect Health Decompensation in Elderly Patients With History of CHF or COPD
Completed NCT03256695 - Evaluate the Relationship Between Use of Albuterol Multidose Dry Powder Inhaler With an eModule (eMDPI) and Exacerbations in Participants With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT03295474 - Telemonitoring in Pulmonary Rehabilitation: Feasibility and Acceptability of a Remote Pulse Oxymetry System.
Withdrawn NCT04042168 - Implications of Appropriate Use of Inhalers in Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT03414541 - Safety And Efficacy Study Of Orally Administered DS102 In Patients With Chronic Obstructive Pulmonary Disease Phase 2
Completed NCT02552160 - DETECT-Register DocumEnTation and Evaluation of a COPD Combination Therapy