Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT06001528
Other study ID # XR Lin
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date January 1, 2021
Est. completion date August 31, 2026

Study information

Verified date September 2023
Source Shantou Central Hospital
Contact Xiaorong Lin, Dr.
Phone 13790891600
Email clarelynn_lin@163.com
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Breast cancer is a malignant tumor with the highest morbidity and mortality among women worldwide. Accurate staging of axillary lymph nodes is critical for metastatic assessment and decisions regarding treatment modalities in breast cancer patient. Among patients who underwent sentinel lymph node biopsy, about 70 % of the patients had negative pathological results and in other words, these 70 % of the patients received unnecessary surgery. At present, imaging and pathological diagnosis is the main measure of lymph node metastasis in breast cancer. However, limitations remained. Artificial intelligence, including deep learning and machine learning algorithms, has emerged as a possible technique, which can make a more accuracy prediction through machine-based collection, learning and processing of previous information, especially in radiology and pathology-based diagnosis. With the intensification of the concept of precision medicine and the development of non-invasive technology, the investigators intend to use the artificial intelligence technology to develop a serum and tissue-based predictive model for sentinel lymph node metastasis diagnosis combined with imaging and pathological information, providing specific, efficient and non-invasive biological indicators for the monitoring and early intervention of lymph node metastasis in patient with breast cancer. Therefore, the investigators retrospectively include serum samples from early breast cancer patients undergoing sentinel lymph node biopsy, including a discovery cohort and a modeling cohort. Metabolites were detected and screened in the discovery cohort and then as the target metabolites for targeted detection in the modeling cohort. Combined with preoperative imaging and pathological information, a prediction model of breast cancer sentinel lymph node metastasis based on serum metabolites would be established. Subsequently, multi-center breast cancer patients will prospectively be included to verify the accuracy and stability of the model.


Recruitment information / eligibility

Status Recruiting
Enrollment 2400
Est. completion date August 31, 2026
Est. primary completion date December 31, 2023
Accepts healthy volunteers No
Gender Female
Age group 18 Years and older
Eligibility Inclusion Criteria: - Pathological diagnosis of breast cancer - No preoperative therapy including chemotherapy or endocrine therapy - No distant metastasis - Underwent mastectomy or breast-conserving surgery with sentinel lymph node biopsy - Agreed to provide preoperative peripheral blood samples - Had access to imaging, pathological and follow-up data for preoperative and postoperative evaluation of the disease Exclusion Criteria: - Neoadjuvant therapy - Presence of distant metastasis at time of diagnosis - Primary malignancies other than breast cancer - Bilateral breast cancer or previous contralateral breast cancer - Undergo modified radical surgery for breast cancer without sentinel lymph node biopsy - Incomplete pathological data and follow-up data - Pregnancy and other conditions determined by the investigator to be ineligible for inclusion in the study

Study Design


Locations

Country Name City State
China Shantou Central Hospital Shantou Guangdong

Sponsors (5)

Lead Sponsor Collaborator
Shantou Central Hospital Shenshan Medical Center of Sun Yat-sen Memorial Hospital, Sichuan Cancer Hospital and Research Institute, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Zhejiang Cancer Hospital

Country where clinical trial is conducted

China, 

References & Publications (8)

Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: A comprehensive review. Clin Genet. 2019 Jun;95(6):643-660. doi: 10.1111/cge.13514. Epub 2019 Feb 27. — View Citation

Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, Mak RH, Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang RY, Aerts HJWL. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552. Epub 2019 Feb 5. — View Citation

Chayakulkheeree J, Pungrassami D, Prueksadee J. Performance of breast magnetic resonance imaging in axillary nodal staging in newly diagnosed breast cancer patients. Pol J Radiol. 2019 Oct 18;84:e413-e418. doi: 10.5114/pjr.2019.89690. eCollection 2019. — View Citation

Isaksen JL, Baumert M, Hermans ANL, Maleckar M, Linz D. Artificial intelligence for the detection, prediction, and management of atrial fibrillation. Herzschrittmacherther Elektrophysiol. 2022 Mar;33(1):34-41. doi: 10.1007/s00399-022-00839-x. Epub 2022 Feb 11. — View Citation

Richard V, Davey MG, Annuk H, Miller N, Kerin MJ. The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer. Mol Cancer. 2022 Apr 4;21(1):95. doi: 10.1186/s12943-022-01506-y. — View Citation

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. — View Citation

Xu Y, Su GH, Ma D, Xiao Y, Shao ZM, Jiang YZ. Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct Target Ther. 2021 Aug 20;6(1):312. doi: 10.1038/s41392-021-00729-7. — View Citation

Zhou H, Zhu L, Song J, Wang G, Li P, Li W, Luo P, Sun X, Wu J, Liu Y, Zhu S, Zhang Y. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer. 2022 Mar 25;21(1):86. doi: 10.1186/s12943-022-01556-2. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Metabolic difference detection Serum metabolites difference between breast cancer patients with and without sentinel lymph node metastasis would be analyzed, and potential biological indicators found. From January 01, 2021 to December 31, 2021
Primary Predictive model establishment Combined with preoperative imaging and pathological information, a predictive model of sentinel lymph node metastasis in breast cancer would be established based on the metabolic difference. From January 01, 2022 to December 31, 2022
Primary Predictive model validation Verify the stability and accuracy of our model in larger cohorts and promote clinical translation. From January 01, 2023 to December 31, 2023
See also
  Status Clinical Trial Phase
Recruiting NCT04681911 - Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer Phase 2
Completed NCT04890327 - Web-based Family History Tool N/A
Terminated NCT04066790 - Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer Phase 2
Completed NCT03591848 - Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility N/A
Recruiting NCT03954197 - Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients N/A
Terminated NCT02202746 - A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer Phase 2
Active, not recruiting NCT01472094 - The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
Withdrawn NCT06057636 - Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study N/A
Completed NCT06049446 - Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
Recruiting NCT05560334 - A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations Phase 2
Active, not recruiting NCT05501769 - ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer Phase 1
Recruiting NCT04631835 - Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer Phase 1
Completed NCT04307407 - Exercise in Breast Cancer Survivors N/A
Recruiting NCT03544762 - Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation Phase 3
Terminated NCT02482389 - Study of Preoperative Boost Radiotherapy N/A
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Completed NCT00226967 - Stress, Diurnal Cortisol, and Breast Cancer Survival
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06019325 - Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy N/A