Breast Cancer Clinical Trial
Official title:
A Retrospective Analysis of Magnetic Resonance Imaging Data for Breast Cancer Screening in the Open Consortium for Decentralized Medical Artificial Intelligence
ODELIA is a project that aims to improve breast cancer detection in magnetic resonance imaging by utilizing artificial intelligence and swarm learning (MRI). The project will create an open-source swarm learning software framework that will be used to train AI models for breast cancer detection. These models' performance will be compared to that of conventional AI models, and the results will be used to assess the effectiveness of swarm learning in improving the accuracy and robustness of AI models. The project will use retrospective, anonymized breast MRI datasets with manual ground truth labels for cancer presence. The study is not associated with any patient treatment or intervention. The project's goal is to provide evidence of the clinical benefits of swarm learning in the context of breast cancer screening, such as accelerated development, improved performance, and robust generalizability.
Artificial Intelligence (AI) is set to revolutionize healthcare as its diagnostic performance approaches that of clinical experts. In particular, in cancer screening, AI could help patients to make better-informed decisions and reduce medical error. However, this requires large datasets whose collection faces severe practical, ethical and legal obstacles. These obstacles could potentially be overcome with swarm learning (SL) where partners jointly train AI models without sharing any data. Yet, access to SL technology is currently limited because no studies have implemented SL in a true multinational setup, no freely usable implementation of SL is available, researchers & healthcare providers have no experience with setting up SL networks and policymakers are currently unaware of the broader implications of SL. ODELIA will aim to solve these issues: ODELIA will build an open-source software framework for SL, providing an assembly line for the streamlined development of AI solutions in a preclinical setting. To serve as a blueprint for future SL-based AI systems, ODELIA partners collaborate as a consortium to develop AI models for the detection of breast cancer in magnetic resonance imaging (MRI). The size of ODELIA's distributed database will be substantial and ODELIA's AI models could reach expert-level performance for breast cancer screening. Thereby, ODELIA will could not just deliver a useful medical application, but provide evidence to summarize the clinical benefit of SL in terms of accelerated development, increased performance and robust generalizability. To achieve this, ODELIA partners will collect retrospective, anonymized breast MRI datasets with manual ground truth labels for the presence of cancer, and will train AI models conventionelly and via SL. The performance of these technical approaches will be compared. The aim of the study is to test the methodology of Swarm Learning and the performance of AI algorithms developed within ODELIA on retrospective data. There will be no effect on treatment of patients as all evaluations will be done retrospectively. No patient treatment or any intervention is associated with the study. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04681911 -
Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer
|
Phase 2 | |
Completed |
NCT04890327 -
Web-based Family History Tool
|
N/A | |
Terminated |
NCT04066790 -
Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer
|
Phase 2 | |
Completed |
NCT03591848 -
Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility
|
N/A | |
Recruiting |
NCT03954197 -
Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients
|
N/A | |
Terminated |
NCT02202746 -
A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer
|
Phase 2 | |
Active, not recruiting |
NCT01472094 -
The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
|
||
Withdrawn |
NCT06057636 -
Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study
|
N/A | |
Completed |
NCT06049446 -
Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
|
||
Recruiting |
NCT05560334 -
A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations
|
Phase 2 | |
Active, not recruiting |
NCT05501769 -
ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer
|
Phase 1 | |
Recruiting |
NCT04631835 -
Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer
|
Phase 1 | |
Completed |
NCT04307407 -
Exercise in Breast Cancer Survivors
|
N/A | |
Recruiting |
NCT03544762 -
Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation
|
Phase 3 | |
Terminated |
NCT02482389 -
Study of Preoperative Boost Radiotherapy
|
N/A | |
Enrolling by invitation |
NCT00068003 -
Harvesting Cells for Experimental Cancer Treatments
|
||
Completed |
NCT00226967 -
Stress, Diurnal Cortisol, and Breast Cancer Survival
|
||
Recruiting |
NCT06037954 -
A Study of Mental Health Care in People With Cancer
|
N/A | |
Recruiting |
NCT06019325 -
Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy
|
N/A | |
Recruiting |
NCT06006390 -
CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors
|
Phase 1/Phase 2 |