Breast Cancer Clinical Trial
— AI-ROLOfficial title:
The Use of AI as a Third Reader and During Consensus in a Double Reading Breast Cancer Screening Program in Sweden
Verified date | April 2022 |
Source | Ostergotland County Council, Sweden |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
The purpose of this observational study is to assess whether the use of AI (Transpara®) can lead to an improved quality of a double reading mammography screening program. This is investigated by performing AI as a third reader and as a decision support during the consensus meeting, compared with conventional mammography screening (double reading and consensus without AI).
Status | Completed |
Enrollment | 15500 |
Est. completion date | February 15, 2022 |
Est. primary completion date | February 15, 2022 |
Accepts healthy volunteers | No |
Gender | Female |
Age group | 40 Years to 74 Years |
Eligibility | Inclusion Criteria: - Women participating in the regular Breast Cancer Screening Program in Region Östergötland Linkoping Exclusion Criteria: - Women with breast implants or other foreign implants in the mammogram - Women with symptoms or signs of suspected breast cancer |
Country | Name | City | State |
---|---|---|---|
Sweden | Region Östergötland | Linköping | Östergötland |
Lead Sponsor | Collaborator |
---|---|
Ostergotland County Council, Sweden |
Sweden,
Kerschke L, Weigel S, Rodriguez-Ruiz A, Karssemeijer N, Heindel W. Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance. Eur Radiol. 2022 Feb;32(2):842-852. doi: 10.1007/s00330-021-08217-w. Epub 2021 Aug 12. — View Citation
Lång K, Dustler M, Dahlblom V, Åkesson A, Andersson I, Zackrisson S. Identifying normal mammograms in a large screening population using artificial intelligence. Eur Radiol. 2021 Mar;31(3):1687-1692. doi: 10.1007/s00330-020-07165-1. Epub 2020 Sep 2. — View Citation
Lång K, Hofvind S, Rodríguez-Ruiz A, Andersson I. Can artificial intelligence reduce the interval cancer rate in mammography screening? Eur Radiol. 2021 Aug;31(8):5940-5947. doi: 10.1007/s00330-021-07686-3. Epub 2021 Jan 23. — View Citation
Pinto MC, Rodriguez-Ruiz A, Pedersen K, Hofvind S, Wicklein J, Kappler S, Mann RM, Sechopoulos I. Impact of Artificial Intelligence Decision Support Using Deep Learning on Breast Cancer Screening Interpretation with Single-View Wide-Angle Digital Breast Tomosynthesis. Radiology. 2021 Sep;300(3):529-536. doi: 10.1148/radiol.2021204432. Epub 2021 Jul 6. — View Citation
Raya-Povedano JL, Romero-Martín S, Elías-Cabot E, Gubern-Mérida A, Rodríguez-Ruiz A, Álvarez-Benito M. AI-based Strategies to Reduce Workload in Breast Cancer Screening with Mammography and Tomosynthesis: A Retrospective Evaluation. Radiology. 2021 Jul;300(1):57-65. doi: 10.1148/radiol.2021203555. Epub 2021 May 4. — View Citation
Rodríguez-Ruiz A, Krupinski E, Mordang JJ, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, Mann RM. Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System. Radiology. 2019 Feb;290(2):305-314. doi: 10.1148/radiol.2018181371. Epub 2018 Nov 20. — View Citation
Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Mann RM, Sechopoulos I. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. J Natl Cancer Inst. 2019 Sep 1;111(9):916-922. doi: 10.1093/jnci/djy222. — View Citation
Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Teuwen J, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Sechopoulos I, Mann RM. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol. 2019 Sep;29(9):4825-4832. doi: 10.1007/s00330-019-06186-9. Epub 2019 Apr 16. — View Citation
Sasaki M, Tozaki M, Rodríguez-Ruiz A, Yotsumoto D, Ichiki Y, Terawaki A, Oosako S, Sagara Y, Sagara Y. Artificial intelligence for breast cancer detection in mammography: experience of use of the ScreenPoint Medical Transpara system in 310 Japanese women. Breast Cancer. 2020 Jul;27(4):642-651. doi: 10.1007/s12282-020-01061-8. Epub 2020 Feb 12. — View Citation
van Winkel SL, Rodríguez-Ruiz A, Appelman L, Gubern-Mérida A, Karssemeijer N, Teuwen J, Wanders AJT, Sechopoulos I, Mann RM. Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study. Eur Radiol. 2021 Nov;31(11):8682-8691. doi: 10.1007/s00330-021-07992-w. Epub 2021 May 4. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Cancer Detection rate | Proportion of women diagnosed with breast cancer among those recalled after consensus | After 4 months of inclusion | |
Primary | Recall or referral rate | Proportion of women who are referred for further diagnostic workup after consensus | After 4 months of inclusion | |
Primary | Positive predictive value of referrals | Proportion of women diagnosed with breast cancer among those referred | After 4 months of inclusion | |
Secondary | Positive predictive value of Transpara® scores | Proportion of breast cancers diagnosed among women with a given AI score | After 4 months of inclusion |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04681911 -
Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer
|
Phase 2 | |
Terminated |
NCT04066790 -
Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer
|
Phase 2 | |
Completed |
NCT04890327 -
Web-based Family History Tool
|
N/A | |
Completed |
NCT03591848 -
Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility
|
N/A | |
Recruiting |
NCT03954197 -
Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients
|
N/A | |
Terminated |
NCT02202746 -
A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer
|
Phase 2 | |
Active, not recruiting |
NCT01472094 -
The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
|
||
Completed |
NCT06049446 -
Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
|
||
Withdrawn |
NCT06057636 -
Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study
|
N/A | |
Recruiting |
NCT05560334 -
A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations
|
Phase 2 | |
Active, not recruiting |
NCT05501769 -
ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer
|
Phase 1 | |
Recruiting |
NCT04631835 -
Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer
|
Phase 1 | |
Completed |
NCT04307407 -
Exercise in Breast Cancer Survivors
|
N/A | |
Recruiting |
NCT03544762 -
Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation
|
Phase 3 | |
Terminated |
NCT02482389 -
Study of Preoperative Boost Radiotherapy
|
N/A | |
Enrolling by invitation |
NCT00068003 -
Harvesting Cells for Experimental Cancer Treatments
|
||
Completed |
NCT00226967 -
Stress, Diurnal Cortisol, and Breast Cancer Survival
|
||
Recruiting |
NCT06037954 -
A Study of Mental Health Care in People With Cancer
|
N/A | |
Recruiting |
NCT06019325 -
Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy
|
N/A | |
Recruiting |
NCT06006390 -
CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors
|
Phase 1/Phase 2 |