Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to identify the mediators and genes in airway epithelial and BAL cells that are differentially regulated following inhalation of endotoxin lipopolysaccharide (LPS) among study participants with allergic asthma and normal phenotypes. This approach is designed to identify novel genes associated with both asthma pathogenesis and asthma susceptibility. LPS, or endotoxin, a cell wall component of gram-negative bacteria, is ubiquitous in the environment, and is thought to influence both susceptibility and severity of asthma.

240 subjects (healthy adult men and women (age >18-40) with and without atopy and asthma) will complete the screening evaluations in order to establish 3 study groups of 60 subjects each. Each qualified subject will undergo an inhaled LPS endotoxin challenge followed by bronchoscopy after 24 hours, which will consist of a bronchoalveolar lavage (BAL) and endobronchial brush biopsies. BAL involves squirting a small amount of sterile salt water into one of the airways then gently taking it back out through the bronchoscope. The brush sample involves gently moving a small brush back and forth in an airway to collect cell samples. Samples of whole blood will also be obtained at various time points. RNA will be isolated from these cell populations in order to assess differential gene expression expression using microarrays.


Clinical Trial Description

Background:

Endotoxin or lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria, is ubiquitous in the environment, and is often present in high concentrations in organic dusts, as well as in air pollution, and household dusts. There is convincing evidence that endotoxin exacerbates airflow obstruction and airway inflammation in allergic asthmatics. Additional findings indicate that allergic airways can enhance the response to inhaled endotoxin, and that endotoxin can enhance the airway response to allergens. However, when considering the interaction between endotoxin and allergens, the timing of the exposure appears to be critical. Emerging evidence suggests that early exposure to endotoxin, a potent inducer of Th1 type cytokines (IFN-g and IL-12), may minimize the risk of allergen sensitization which could has profound effects on reducing the risk of developing asthma in children. Independent of its effect in allergic asthma, several studies demonstrate that inhalation of air contaminated with endotoxin is associated with the classical features of asthma (reversible airflow obstruction and airway inflammation, and persistent airway hyperreactivity and airway remodeling). Epidemiological studies have shown that the concentration of inhaled endotoxin in the bioaerosol is strongly and consistently associated with reversible airflow obstruction among cotton workers, agricultural workers, and fiberglass workers. Importantly, the concentration of endotoxin in the bioaerosol is the most important occupational exposure associated with the development and progression of airway disease in agricultural workers. Experimentally, inhalation of endotoxin can cause reversible airflow obstruction and airway inflammation in previously unexposed healthy study subjects. The ability of the host to respond to endotoxin is highly variable, and is influenced in part by genetic factors.:

The rationale for this investigation is based on the following points:

- asthma is caused in large part by both genetic susceptibility and environmental exposure,

- a variety of immune and non-immune mechanisms can function independently or interactively to cause airway hyper-reactivity, airflow obstruction, airway inflammation, and airway remodeling,

- environmental challenges can be used to "narrow the asthma phenotype" and allow one to investigate unique gene-environment interactions that are involved in the development of biologically specific forms of asthma,

- genes that are over or under stimulated in the airway epithelia of asthmatics following inhalation challenge are important in the pathogenesis of asthma ;


Study Design

Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Basic Science


Related Conditions & MeSH terms


NCT number NCT00644514
Study type Interventional
Source Duke University
Contact
Status Terminated
Phase Phase 1
Start date September 2007
Completion date April 2008

See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1