Clinical Trials Logo

Clinical Trial Summary

This is a non-randomized clinical trial using a lentiviral gene transfer vector (or lentivector, LV) to treat patients with X-linked severe combined immunodeficiency (XSCID) who have clinically significant impairment of immunity. We will collect the patient s own stem cells that will be transduced or exposed to the vector carrying a normal copy of the gene. The gene-corrected stem cells will be administered as a one-time infusion. Patients will receive a low-moderate dose of a chemotherapy drug called busulfan (6 mg/kilogram body weight) to allow engraftment of the stem cells. After the infusion, patients will be monitored to see if the treatment is safe and whether their immune system improves. Patients will be monitored for up to 15 years after treatment to assess immune function and the safety of the treatment. XSCID is a genetic disease caused by defects in the common gamma chain, a protein found at the surface of immune cells called lymphocytes, and is necessary to their growth and function. XSCID patients cannot make T-lymphocytes necessary to fight infections, and their B-cells fail to make essential antibodies. Without normal T-and B-lymphocyte function, patients develop fatal infections in infancy unless they receive a bone marrow transplant from a healthy donor. The best type of transplant is from a tissue-matched healthy sibling, but most XSCID patients do not have a tissue-matched sibling and are treated with a transplant from a parent who is only half-matched by tissue typing. While a half-matched transplant from a parent can be lifesaving for an infant with XSCID, a subset of patients fail to achieve sufficient long-lasting restoration of immunity to prevent infections and other chronic problems. Trials of gene transfer treatments using mouse retrovirus vectors for infants with XSCID have been performed and have shown this type of gene transfer can be an alternate approach for significantly restoring immunity to infants with XSCID. However, among the 18 infants with XSCID benefiting long-term from the gene transfer treatment, 5 developed T-lymphocyte leukemia and 1 died of this leukemia. When older children with XSCID were treated with gene transfer, the restoration of immunity was much less than seen in the infants. These observations of gene transfer treatments using mouse retrovirus vectors to treat infants and older patients with XSCID suggest that safer and more effective vectors were needed and that there also may be a need to give chemotherapy or another mode of conditioning to increase engraftment in the marrow of the gene-corrected blood stem cells. Our data and other published studies suggest that lentivectors derived from the human immunodeficiency virus and have the properties of our highly modified vector have a reduced interaction with nearby genes and therefore less of a tendency to activate genes that may lead to cancer formation. This type of lentivector may work better at getting into blood stem cells. The study's purpose is to evaluate the safety and effectiveness of lentiviral gene transfer treatment in restoring immune function to 35 XSCID patients who are 2 to 40 years of age and have significant impairment of immunity. Early evidence for effectiveness will be defined by appearance and expansion in the circulation of the patient s gene-corrected T-lymphocytes with a functional >=c gene and improved laboratory measures of immune function. The primary endpoint for efficacy will be at 2 years after treatment and will include these laboratory parameters plus evidence for clinical benefit. Evidence for safety will focus on the maintenance of a diversity of gene-marked cells and no occurrence of abnormal patterns of production of blood cells or any leukemia or other cancer.


Clinical Trial Description

This is a Phase I/II non-randomized clinical trial of ex vivo hematopoietic stem cell (HSC) gene transfer treatment for X-linked severe combined immunodeficiency (XSCID, also known as SCID-X1) using a self-inactivating lentiviral vector incorporating additional features to improve safety and performance. The study will treat 23 patients with XSCID who are between 2 and 40 years of age and who have clinically significant impairment of immunity. Patients will receive a total busulfan dose of approximately 6 mg/kg/body weight (target busulfan Area Under Curve is 4500 min*umol/L/day) delivered as 3mg/kg body weight on day 1 and dose adjusted on day 2 (if busulfan AUC result is available) to achieve the target dose, to condition their bone marrow, and this will be followed by a single infusion of autologous transduced CD34+HSC. Patients will then be followed to evaluate engraftment, expansion, and function of gene corrected lymphocytes that arise from the transplant; to evaluate improvement in laboratory measures of immune function; to evaluate any clinical benefit that accrues from the treatment; and to evaluate the safety of this treatment. The primary endpoint of the study with respect to these outcomes will be at 2 years, though data relevant to these measures will be collected at intervals throughout the study and during the longer follow-up period of at least 15 years recommended by the FDA Guidance "Gene Therapy Clinical Trials - Observing Subjects for Delayed Adverse Events" http://www.fda.gov/downloads - BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation / Guidances/Cellular and Gene Therapy - ucm078719.pdf for patients participating in gene transfer clinical trials. XSCID results from defects in the IL2RGgene encoding the common gamma chain (yc) shared by receptors for Interleukin 2 (IL-2), IL-4, IL-7, IL-9, IL-15 and IL-21. At birth XSCID patients generally lack or have a severe deficiency of T-lymphocytes and NK cells, while their B- lymphocytes are normal in number but are severely deficient in function, failing to make essential antibodies. The severe deficiency form of XSCID is fatal in infancy without intervention to restore some level of immune function. The best current therapy is a T-lymphocyte-depleted bone marrow transplant from an HLA tissue typing matched sibling, and with this type of donor it is not required to administer chemotherapy or radiation conditioning of the patient's marrow to achieve excellent engraftment and immune correction of an XSCID patient. However, the great majority of patients with XSCID lack a matched sibling donor, and in these patients the standard of care is to perform a transplant of T- lymphocyte depleted bone marrow from a parent. This type of transplant is called haploidentical because in general a parent will be only half- matched by HLA tissue typing to the affected child. Whether or not any conditioning is used, haploidentical transplant for XSCID has a significantly poorer prognosis than a matched sibling donor transplant. Following haploidentical transplant, XSCID patients are observed to achieve a wide range of partial immune reconstitution and that reconstitution can wane over time in some patients. That subset of XSCID patients who either fail to engraft, fail to achieve adequate immune reconstitution, or lose immune function over time suffer from recurrent viral, bacterial and fungal infections, problems with allo- or autoimmunity, impaired pulmonary function and/or significant growth failure. We propose to offer gene transfer treatment to XSCID patients3 2 years of age who have clinically significant defects of immunity despite prior haploidentical hematopoietic stem cell transplant, and who lack an HLA-matched sibling donor. Our current gene transfer treatment protocol can be regarded as a salvage/rescue protocol. Recent successful retroviral gene transfer treatment instead of bone marrow transplant (BMT) in Paris and London for 20 infants with XSCID has provided proof of principle for efficacy. However, a major safety concern is the occurrence of 5 cases of leukemia at 3-5 years after treatment triggered in part by vector insertional mutagenesis activation of LMO2 and other DNA regulatory genes by the strong enhancer present in the long-terminal repeat (LTR) of the Moloney Leukemia Virus (MLV)- based vector. Furthermore, previous studies of gene transfer treatment of older XSCID patients with MLV- based vectors demonstrated the additional problem of failure of adequate expansion of gene corrected T- lymphocytes to the very high levels seen in infants. To reduce or eliminate this leukemia risk, and possibly enhance 13 performance sufficiently to achieve benefit in older XSCID patients, we have generated a lentivector with improved safety and performance features. We have generated a self-inactivating (SIN) lentiviral vector that is devoid of all viral transcription elements; that contains a short form of the human elongation factor 1a (EF1a) internal promoter to express a codon optimized yc cDNA; and that has flanking copies of the 400 base pair insulator fragment from the chicken HS4 (Omega)-globin locus to provide further protection from untoward effects on flanking cellular genes. Preclinical data from our own laboratories as well as from others support the hypothesis that our SIN lentiviral vector will be significantly less prone to activating cellular oncogenes in general, and LMO2 (the gene responsible for most cases of gene transfer-related leukemias) in particular. Furthermore, our vector, designated as CL20-4i-EF1a-hyc-OPT, has established activity for reconstituting yc expression and signaling in human lymphocyte cell lines and has achieved a high level of in vivo efficacy in treatment of XSCID mice and dogs. We also established a novel stable producer cell line to allow efficient and safe high titer production of clinical lentiviral vector, greatly facilitating conduct of this clinical trial. Based on our previous experience in treating older patients with XSCID who are either partially haploidentical donor engrafted or who failed to engraft despite multiple attempts at haploidentical donor transplant, there appears to be a significant barrier to engraftment of autologous gene corrected CD34 stem cells and an associated failure of production of adequate numbers of gene corrected autologous lymphocytes. The targeted patients for this study may have some degree of lymphoid immunity either from donor lymphocytes or their own partially functional or autologous lymphocyes that may have played a role in the poor engraftment and function of their previous haploidential HSC transplant. Furthermore, some patients may also have some graft versus host disease as a result of previous HSC transplant. In addressing these barriers to engraftment in these XSCID patients, we will pre-treat with moderate dose (~6 mg/kg) busulfan to create space or niches in bone marrow for incoming autologous gene corrected HSCs. We plan to treat up to 23 XSCID patients, where all patients will receive the identical conditioning, gene transfer treatment, and follow-up evaluation. Mobilized peripheral blood stem cells harvested by apheresis will be the first choice source of HSC for this study, but patients who for any reason cannot provide sufficient HSC by this method (e.g. poor mobilization, inefficient apheresis separation of HSC, or inadequate central access as needed for apheresis), will have HSC collected by bone marrow harvest. At the NIH, patients can use autologous CD34+ HSC collected previously under a separate currently IRB approved stem cell collection protocol (NIH protocol 94-I- 0073; H. Malech, PI) or they will have autologous CD34+ HSC collected via apheresis under this protocol. A patient enrolled in this protocol will not proceed to transduction of the autologous HSC or to busulfan conditioning (i.e. will not be treated with gene transfer corrected cells) until there are at least 3 x 106per kilogram body weight autologous CD34+HSC (from mobilized peripheral blood stem cell apheresis collection as method of choice, and/or by bone marrow harvest) available for gene transfer transduction. Patients will undergo a pre-treatment evaluation of both laboratory and clinical measures of immune function. Autologous CD34+HSC will be transduced ex vivo with the VSV-G pseudotyped CL20-4i- EF1a-hyc-OPT lentivector. All patients will receive a single intravenous infusion of the washed transduced cells administered intravenously on protocol Day 0. on Days -3 and -2 patients will receive an infusion of busulfan ~3 mg/kilogram body weight/day (for a total dose of ~6 mg/kilogram body weight) as conditioning to enhance engraftment of gene corrected autologous CD34+HSC. On Days - 6, -5, -4 and 1, 2 and 3, patients will receive an infusion of Keratinocyte Growth Factor (palifermin) at 60 mg/kg/day. Palifermin at this dose and schedule is FDA approved to reduce or prevent mucositis following conditioning regimens, including those that use busulfan. Following the conditioning and gene transfer treatment, subjects will be supported through any period of cytopenia and monitored for safety and efficacy of the gene transfer treatment. Early evidence for efficacy will be defined by appearance and expansion in the circulation of autologous transduced T-lymphocytes with functional yc and improved laboratory measures of immune function in the interim evaluation of these parameters at 1 year after treatment. Endpoint evidence for efficacy at 2 years after treatment will include these same laboratory parameters measured at the 2 year time point plus evidence for clinical benefit. Evidence for safety will focus on the maintenance of polyclonality of vector marking, the lack of emergence of a dominant gene marked clone in any hematopoietic lineage, and no occurrence of either hematologic dysplasia or any leukemia or other cancer resulting from the gene transfer. The primary study endpoints for all laboratory and clinical measures of efficacy and safety will occur at 2 years after gene transfer treatment. However, data collection regarding efficacy will occur at frequent intervals during the 2 years leading up to the endpoint analysis, and long- term safety and efficacy evaluation will continue at intervals during the long-term follow-up recommended by FDA Guidance for gene transfer treatment studies. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01306019
Study type Interventional
Source National Institutes of Health Clinical Center (CC)
Contact Suk S De Ravin, M.D.
Phone (301) 496-6772
Email sderavin@mail.nih.gov
Status Recruiting
Phase Phase 1/Phase 2
Start date September 25, 2012
Completion date December 31, 2032

See also
  Status Clinical Trial Phase
Terminated NCT00490100 - Treatment for Growth Failure in Patients With X-Linked Severe Combined Immunodeficiency: Phase 2 Study of Insulin-Like Growth Factor-1 Phase 1/Phase 2