Clinical Trials Logo

Vascular Inflammation clinical trials

View clinical trials related to Vascular Inflammation.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT06083337 Recruiting - Clinical trials for Coronary Artery Disease

Vascular Inflammation ReDuction and Perivascular Fat Imaging by Computed Tomography

VIRDICT
Start date: January 22, 2022
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to compare the effect of standard of care management vs. CaRi-Heart based management on vascular inflammation in patients with increased Fat Attenuation Index-Score. The main questions it aims to answer are: - Does treatment intensification reduce vascular inflammation detected by perivascular fat imaging to a greater extent than standard of care treatment? - Do changes in vascular inflammation biomarkers correlate with changes in lipid metrics or inflammatory biomarkers, such as interleukin-6? Participants will be randomized either to standard of care treatment or intensified treatment with maximum dose of atorvastatin +/- low dose of colchicine. After their inclusion, study participants will be followed-up for 6 months with regular monitoring for adverse events and blood will be drawn at 3 and 6 months. After the 6-month follow-up, participants will undergo CCTA imaging for fat attenuation index measurements. Researchers will compare standard of care and vascular inflammation-based treatment to see if inflammation-based treatment is more potent against vascular inflammation.

NCT ID: NCT05812755 Recruiting - Clinical trials for Endothelial Dysfunction

SGC Stimulation, Perioperative Vascular Reactivity, and Organ Injury in Cardiac Surgery

SOLSTICE
Start date: May 19, 2023
Phase: Phase 4
Study type: Interventional

The goal of this mechanistic clinical trial is to learn about the effects of medications called soluble guanylyl cyclase stimulators on vascular function and markers of kidney and brain injury in patients having heart surgery. The main questions it aims to answer are: 1. Does soluble guanylyl cyclase stimulation improve blood vessel function compared to placebo? 2. Does soluble guanylyl cyclase stimulation decrease markers of kidney injury and brain injury compared to placebo? Participants will be randomized to a soluble guanylyl cyclase stimulator called vericiguat or placebo, and researchers will compare vascular function and markers of brain and kidney injury to see if vericiguat improves vascular function and reduces markers of injury. This will provide important information to determine the underlying reasons that patients have some kidney and brain function problems after having heart surgery.

NCT ID: NCT05619653 Recruiting - Clinical trials for Left Ventricular Dysfunction

Myocardial Protection in Patients With Post-acute Inflammatory Cardiac Involvement Due to COVID-19

MYOFLAME-19
Start date: December 12, 2022
Phase: Phase 3
Study type: Interventional

Long COVID or Postacute sequelae of COVID-19 infection (PASC) are increasingly recognised complications, defined by lingering symptoms, not present prior to the infection, typically persisting for more than 4 weeks. Cardiac symptoms due to post-acute inflammatory cardiac involvement affect a broad segment of people, who were previously well and may have had only mild acute illness (PASC-cardiovascular syndrome, PASC-CVS). Symptoms may be contiguous with the acute illness, however, more commonly they occur after a delay. Symptoms related to the cardiovascular system include exertional dyspnoea, exercise intolerance chest tightness, pulling or burning chest pain, and palpitations (POTS, exertional tachycardia). Pathophysiologically, Long COVID relates to small vessel disease (endothelial dysfunction) vascular dysfunction and consequent tissue organ hypoperfusion due to ongoing immune dysregulation. Active organs with high oxygen dependency are most affected (heart, brain, kidneys, muscles, etc.). Thus, cardiac symptoms are often accompanied by manifestations of other organ systems, including fatigue, brain fog, kidney problems, myalgias, skin and joint manifestations, etc, now commonly referred to as the Long COVID or PASC syndrome. Phenotypically, PostCOVID Heart involvement is characterised by chronic perivascular and myopericardial inflammation. We and others have shown changes using sensitive cardiac MRI imaging that relate to cardiac symptoms (Puntmann et al, Nature Medicine 2022; Puntmann et al, JAMA Cardiol 2020; Summary of studies included in 2022 ACC PostCOVID Expert Consensus Taskforce Development Statement, JACC 2022, references below). Early intervention with immunosuppression and antiremodelling therapy may reduce symptoms and development of myocardial impairment, by minimising the disease activity and inducing disease remission. Low-dose maintenance therapy may help to maintain the disease activity at the lowest possible level. The benefits of early initiations of antiremodelling therapy to reduce symptoms of exercise intolerance are well recognised, but not commonly employed outside the classical cardiology contexts, such as heart failure or hypertension. As most patients with inflammatory heart disease only have mild or no structural abnormalities, they are left untreated (standard of care). The aim of this study is to examine the efficacy of a combined immunosuppressive / antiremodelling therapy in patients with PASC symptoms and inflammatory cardiac involvement determined by CMR, to reduce the symptoms and inflammatory myocardial injury and thereby stop the progression to reduced LVEF, HF and death. References: https://www.nature.com/articles/s41591-022-02000-0 https://jamanetwork.com/journals/jamacardiology/fullarticle/2768916 https://www.jacc.org/doi/abs/10.1016/j.jacc.2022.02.003

NCT ID: NCT05195164 Recruiting - Blood Pressure Clinical Trials

The Effects of Orchiectomy and Age on Vascular and Metabolic Health in Older Versus Younger Transgender Women

Start date: March 22, 2021
Phase:
Study type: Observational

This study plans to learn more about differences in heart disease risk after gender-affirming orchiectomy (i.e., testes removal) in older transgender (trans) women compared to younger trans women.

NCT ID: NCT04620876 Recruiting - Stroke Clinical Trials

Bimodal and Coaxial High Resolution Ophtalmic Imaging

AOSLO-OCT
Start date: October 1, 2019
Phase: N/A
Study type: Interventional

The knowledge of the pathogenesis of retinal affections, a major cause of blindness, has greatly benefited from recent advances in retinal imaging. However, optical aberrations of the ocular media limit the resolution that can be achieved by current techniques. The use of an adaptive optics system improves the resolution of ophthalmoscopes by several orders of magnitude, allowing the visualization of many retinal microstructures: photoreceptors, vessels, bundles of nerve fibers. Recently, the development of the coupling of the two main imaging techniques, the Adaptive Optics Ophthalmoscope with Optical Coherence Tomography, enables unparalleled three-dimensional in vivo cell-scale imaging, while remaining comfortable for the patients. The purpose of this project is to evaluate the performance of this system for imaging micrometric retinal structures.

NCT ID: NCT04237467 Recruiting - Blood Pressure Clinical Trials

Effects of Aging and Gender-Affirming Hormone Therapy on Vascular Endothelial Function and Metabolic Profiles in Transgender Men

Start date: January 29, 2020
Phase:
Study type: Observational

This study will examine markers of vascular endothelial function (vascular health) and metabolic profiles in older versus younger transgender men (people who were assigned female at birth but whose gender identity is male). Data will also be compared to those from age group-matched transgender women and cisgender women and men.

NCT ID: NCT04129021 Recruiting - Stroke Clinical Trials

Multimodal Ophthalmic Imaging

IMA-MODE
Start date: July 15, 2019
Phase: N/A
Study type: Interventional

Knowledge of the pathogenesis of ocular conditions, a leading cause of blindness, has benefited greatly from recent advances in ophthalmic imaging. However, current clinical imaging systems are limited in resolution, speed, or access to certain structures of the eye. The use of a high-resolution imaging system improves the resolution of ophthalmoscopes by several orders of magnitude, allowing the visualization of many microstructures of the eye: photoreceptors, vessels, nerve bundles in the retina, cells and nerves in the cornea. The use of a high-speed acquisition imaging system makes it possible to detect functional measurements such as the speed of blood flow. The combination of data from multiple imaging systems to obtain multimodal information is of great importance for improving the understanding of structural changes in the eye during a disease. The purpose of this project is to observe structures that are not detectable with routinely used systems.

NCT ID: NCT04066283 Recruiting - Blood Pressure Clinical Trials

Effects of Aging and Gender-Affirming Hormone Therapy on Vascular Endothelial Function and Metabolic Profiles in Transgender Women

Start date: April 17, 2019
Phase:
Study type: Observational

This study will examine markers of vascular endothelial function (vascular health) and metabolic profiles in younger versus older transgender women (people who were assigned male at birth but whose gender identity is female). Data will also be compared to those from cisgender women and men.

NCT ID: NCT02379676 Recruiting - Clinical trials for Endothelial Dysfunction

Effect of Ticagrelor Versus Clopidogrel on Endothelial Dysfunction and Vascular Inflammation

Start date: January 2015
Phase: Phase 4
Study type: Interventional

The purpose of this study is to compare the effects of ticagrelor and clopidogrel on endothelial dysfunction and vascular inflammation Ticagrelor will lead to beneficial pleiotropic effects compared with treatment with clopidogrel in patients receiving a drug-eluting stents (DES) during percutaneous coronary intervention (PCI) for non-ST-segment acute coronary syndrome (NSTE-ACS) beyond 1 month after the index event. Ticagrelor treatment will improve percent flow-mediated dilation (FMD) values and reduces inflammatory gene expression on peripheral blood mononuclear cells.