View clinical trials related to Vascular Endothelium.
Filter by:The greatest challenge in our ageing society are cardiovascular diseases such as stroke, heart attack, peripheral artery disease of the legs with non-healing wounds (ulcers), or diabetes. Specific diets with high polyphenol content are associated with lower incidence of cardiovascular disease and can improve macrovascular function when consumed acutely and chronically. Which role the smallest blood vessels (microcirculation) play in this and if the microcirculation responds to therapies is not well understood. One reason for this is that no generally available medical instrument has the resolution to study the microcirculation. The recently developed optical coherence tomography angiography (OCTA), currently mainly used by eye doctors, is able to visualise the microcirculation. The current randomised controlled cross-over proof-of-concept study will test the acute effect of a cocoa flavanol intervention on cutaneous microvascular structure and function of hands and feet together with macrovascular function of upper and lower extremities in healthy and type 2 diabetes participants. It is the hypothesis that cocoa flavanol intervention as compared to placebo can acutely increase microvascular vasodilation and macrovascular endothelial function in arms and legs together with arterial stiffness in both healthy and type 2 diabetes participants.
Prolonged periods of reduced activity are associated with decreased vascular function and muscle atrophy. Physical inactivity due to a sedentary lifestyle or acute hospitalization is also associated with impaired recovery, hospital readmission, and increased mortality. Older adults are a particularly vulnerable population as functional (vascular and skeletal muscle mitochondrial dysfunction) and structural deficits (loss in muscle mass leading to a reduction in strength) are a consequence of the aging process. The combination of inactivity and aging poses an added health threat to these individuals by accelerating the negative impact on vascular and skeletal muscle function and dysfunction. The underlying factors leading to vascular and skeletal muscle dysfunction are unknown, but have been linked to increases in oxidative stress. Additionally, there is a lack of understanding of how vascular function is impacted by inactivity in humans and how these changes are related to skeletal muscle function. It is the goal of this study to investigate the mechanisms that contribute to disuse muscle atrophy and vascular dysfunction in order to diminish their negative impact, and preserve vascular and skeletal muscle function.
Urban air pollution is a major contributor to greenhouse gases and has been shown to increase cardiovascular mortality and morbidity. This century has seen a rebirth of biofuel marketing and research, with biodiesel emerging as one of the strongest contenders within international markets. The pursuit of alternative renewable fuels is incredibly complex and has powered research in agriculture, biotechnology, production, transportation, feedstocks, ecology and biomass manufacturing. In spite of this, health effects have been an almost completely overlooked aspect. The purpose of this study is to investigate whether 100% biodiesel exhaust exposure in healthy volunteers leads to cardiovascular and inflammatory responses. Further investigations into the chemical composition of biodiesel exhaust will also be performed.