View clinical trials related to Upper Extremity Paresis.
Filter by:Stroke often leads to long-term disability including upper extremity (UE) dysfunction even with the provision of timely rehabilitation services. Brain injury stemming from stroke, affecting the corticospinal system results in weakness, alterations in muscle tone and incoordination during the performance of functional tasks. Recovery of functional task performance after injury to the corticospinal system involves a residual neural network that engages the premotor cortex, frontal cortex and supplementary motor cortex. In particular, the dorsal premotor cortex (PMd) is anatomically and physiologically poised to reorganize and support motor recovery after corticospinal damage. The goal of this study is to determine the feasibility and efficacy of stimulating the ipsilesional PMd in adults with chronic stroke using noninvasive anodal transcranial direct current stimulation (tDCS) during the training sessions of a 4-week circuit-based, UE, task-related training (TRT) program. Pilot data from six adults, using anodal tDCS over the injured PMd just before each session of TRT, led to significant improvements in UE function in 5 of the 6 adults after only 4 weeks of training. We will assess the motor function of both arms using clinical assessments immediately before and after the 4-week TRT program. In addition to effects of tDCS-primed UE-TRT on clinical outcomes, we will use functional magnetic resonance imaging (fMRI) to determine the changes in neural network reorganization. We hypothesize that the training program will reveal significant improvement in motor function based on clinical assessment as well as significant global network changes based on resting state functional MRI and hybrid diffusion MR imaging. The long-term goal of this research is to develop an effective intervention strategy to improve UE function in individuals with moderate impairment from chronic stroke.
After a stroke, it is very common to lose the ability to open the affected hand. The purpose of this study is to compare the effects of three different therapies on recovery of hand function after stroke and determine if any one is better than the other.
The purpose of this study is to find out what are the best settings for applying electrical nerve stimulation over the skin for the short-term improvement of hand dysfunction after a stroke. The ultimate goal is to some day design an effective long-term training program to help someone recovery their ability to use their hands and function independently at home and in society. In order to know how to apply electrical nerve stimulation to produce a good long-term effect on hand dysfunction, we first need to know how to make it work best in the short-term, and improve our understanding of for whom it works and how it works.We will use a commercially available transcutaneous electrical nerve stimulation (TENS) unit to gently apply electrical nerve stimulation over the skin of the affected arm. This is a portable, safe and easy to use device designed for patients to operate in their homes.