View clinical trials related to Upper Extremity Dysfunction.
Filter by:This is a single subject design study to investigate the effectiveness of electromyography-controlled virtual reality and serious gaming treatment on upper extremity functionality in patients in the chronic recovery stage after stroke. The treatment consists of 18 sessions, 3 times per week, 2 hours each session. The investigator's hypothesis is that this treatment will improve upper limb functionality in our study population, this outcome will be measured with Fugl-Meyer Upper-Extremity (FMA-UE) and Action Research Arm Test (ARAT) tests and Kinematic analysis. In addition, we expect to see an increase in the strength of the affected limb and an increase in the embodiment of the upper limb trained.
Stimulation of the spinal cord may induce the growth and reorganization of neural pathways leading to the re-animation of paralyzed limbs. Growing evidence indicates that electrical spinal cord stimulation improves motor functions immediately via modulating the excitability of spinal circuitry in patients with spinal cord injury. Recently, a novel, non-invasive, well-tolerated and painless transcutaneous electrical stimulation strategy was demonstrated to be effective for improving lower limb motor function in healthy individuals and in patients with spinal cord injury. The investigators hypothesize that transcutaneous cervical electrical stimulation can enhance conscious motor control and functions of hand and arm via neuromodulation of spinal network. This study is a prospective efficacy trial of transcutaneous cervical electrical stimulation for improving upper limb function in patients with traumatic or degenerative cervical spinal cord injury. Transcutaneous electrical spinal stimulation device is not regulated by the United States Food and Drug Administration for treatment of spinal cord injury. The interventions include either transcutaneous cervical spinal electrical stimulation combined with physical therapy or physical therapy only. The order of the interventions will be randomized for each subject in a delayed cross-over design. Total duration of the study is 6 months, including 4 weeks baseline measurements, 8 weeks intervention and 12 weeks follow-up. Both immediate and lasting improvements in hand motor and sensory function via transcutaneous cervical spinal stimulation will be evaluated.