Clinical Trials Logo

Clinical Trial Summary

Together with Crohn's disease (CD), ulcerative colitis (UC) is one of the major forms of inflammatory bowel diseases (IBD).Currently, no curative therapy is available, since the pathophysiology of this disease is incompletely understood (1-3) and clinical practice demonstrates that current therapies induce remission in subgroups of patients only. Scientific evidence suggests that colitogenic immune responses can be controlled by increasing the number of circulating regulatory T cells (Treg) (4). The production of large numbers of autologous Treg is possible by isolation of CD25+ cells from the whole blood of a patient and subsequent ex vivo expansion in the presence of the immunomodulatory drug rapamycin, Interleukin-2 (IL-2) and CD3/CD28 expander beads (5). ER-TREG 01 is a single-center, open-label, fast-track phase I dose-escalation study designed to assess the safety profile and maximal tolerated dose (MTD) of a single infusion of ex vivo expanded autologous Treg in patients with active ulcerative colitis.


Clinical Trial Description

While the primary cause of inflammatory bowel disease (IBD) development remains unknown, it is widely accepted that the initial events culminate in persistent immune responses with infiltration of immune cells and tissue destruction in the gut. Immune cell populations present within the inflamed bowel wall of IBD patients have been extensively characterized and studied (1;6). Studies focusing on T cells have demonstrated that the mucosa of Crohn's disease (CD) patients is dominated by Th1 cells, while in patients with ulcerative colitis (UC) T helper cells with an atypical Th2 profile, which excessively produce IL-5 and IL-13 but not IL-4, are abundant (7). Furthermore, Th17 cells can be identified in the inflamed lamina propria and these cells are thought to play an important role in the pathophysiology of IBD, although the pathogenic mechanisms of these cells are not yet fully understood (8;9). Treg are also present within the lamina propria and these cells control the effector T cell populations mentioned above. They can be generated through the interaction of local T cells with CD103 expressing dendritic cells and intestinal epithelial cells, respectively (10;11). Moreover, the expression of integrins on the Treg surface (e.g. α4β7) facilitates mucosal migration through their interaction with specific ligands (e.g. MAdCAM1). As such, homing and local expansion of Treg cells create a local Treg pool that is essential for self-tolerance and the support of gut homeostasis (12). In addition, Treg cells are shown to suppress proinflammatory intestinal immune responses in colitis and colitis-associated cancer (13-16) and they are thought to augment intestinal Th17 responses (17). As previous studies have demonstrated insufficient expansion of mucosal Treg cells in IBD patients in comparison to the massive local expansion of effector T cells, it is likely that the relatively low number of Treg cells in IBD patients explains why these cells fail to control excessive immune responses (18). Experimental colitis studies in mice have demonstrated that colitogenic immune responses can be controlled by increasing the number of mucosal Treg cells and highlight the potential of Treg-based cell therapy in IBD (19). Specifically, co-transfer of naïve CD4+ T cells with Treg both prevents chronic colitis and ameliorates established colitis in severe combined immunodeficiency (SCID) mice (20). Moreover, CD4+ T cells expanded ex vivo in the presence of rapamycin prevent the development of colitis in a naïve CD4+ T cell model in SCID mice. Importantly, the systemic administration of rapamycin alone only partially prevented the development of colonic Inflammation (20). In addition, the adoptive transfer of nTreg cells as well as the adoptive transfer of ex vivo transforming growth factor (TGF)-β-induced Treg (iTreg) suppressed colitis activity in vivo in mouse models (13;15;21). Collectively, these data suggest that Treg cells could be used for therapy of intestinal inflammation in IBD (22). To allow an adoptive transfer of large numbers of Treg, CD25+ Treg cells are isolated from an autologous leukapheresis product and in vitro expanded during 21 days in the presence of the additives Interleukin-2 (IL-2), rapamycin and anti-CD3/anti-CD28 expander beads. After 21 days of expansion, anti-CD3/anti-CD28 expander beads are removed from the Treg drug product. Next, Treg are frozen in aliquots of 10 Million Treg/mL until further use (5). Twelve patients, including 10% patient loss, resulting in at least ten treated and fully evaluable patients, will be enrolled in this single-center, open-label, fast-track dose-escalation study. Autologous ex vivo expanded CD4+CD25+CD127-/lo Treg cells will be adoptively transferred in patients with ulcerative colitis with active disease or stable disease under the allowed concomintant therapy at the time of enrollment. The maximal tolerated dose (MTD) is defined as the dose that does not produce more than one dose-limiting toxicity (DLT) among a total of four treated patients at the particular dose level. The first enrolled patient will receive the initial starting dose of 0.5 x10e6 Treg/kg bodyweight. Adoptive transfer is escalated to the next dose level (1 x 10e6 Treg/kg, 2 x 10e6 Treg/kg, 5 x 10e6/Treg/kg and 10 x 10e6 Treg/kg bodyweight), in a next patient, if no DLT occurs. Consecutive patients will be treated at least four weeks apart to monitor acute severe adverse advents. If a DLT is noted, three additional patients will receive the same dose level. Dose-escalation continues until at least two patients among a cohort of four patients experience a DLT. If two patients among a cohort of four patients experience a DLT, dose de-escalation to the highest previously tolerated dose-level will follow. Three additional patients will receive the highest previously tolerated dose. If a DLT is noted in at least two patients at the tested dose-level, dose de-escalation will continue until less than two patients have experienced a DLT. After successful enrollment at the highest dose-level, five additional patients will be enrolled at the highest dose level to extend safety assessment. If no DLTs or less than two DLTs are experienced at all dose-levels tested, the MTD is not reached. In this case, a maximal administered dose (MAD) is defined. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04691232
Study type Interventional
Source University of Erlangen-Nürnberg Medical School
Contact
Status Completed
Phase Phase 1
Start date February 22, 2021
Completion date May 22, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT05702879 - Combined Microbiota and Metabolic Signature in Ulcerative Colitis Predicts Anti-Inflammatory Therapy Success
Not yet recruiting NCT05953402 - A Study of Ozanimod in Pregnant Women With Ulcerative Colitis and Their Offspring
Recruiting NCT05316584 - A Novel Remote Patient and Medication Monitoring Solution to Improve Adherence and PerSiStence With IBD Therapy N/A
Recruiting NCT03950232 - An Extension Study for Treatment of Moderately to Severely Active Ulcerative Colitis Phase 3
Completed NCT03124121 - Study of the Golimumab Exposure-Response Relationship Using Serum Trough Levels Phase 4
Not yet recruiting NCT06100289 - A Study of Vedolizumab in Children and Teenagers With Ulcerative Colitis or Crohn's Disease Phase 3
Withdrawn NCT04209556 - A Study To Evaluate The Safety And Efficacy Of PF-06826647 In Participants With Moderate To Severe Ulcerative Colitis Phase 2
Terminated NCT00061282 - Clotrimazole Enemas for Pouchitis in Children and Adults Phase 1/Phase 2
Recruiting NCT04398550 - SCD vs. Mediterranean Diet Therapy in Ulcerative Colitis N/A
Recruiting NCT04314375 - Study to Evaluate the Safety, Efficacy, and Pharmacokinetics of Budesonide Extended-release Tablets in Pediatric Subjects Aged 5 to 17 Years With Active, Mild to Moderate Ulcerative Colitis Phase 4
Active, not recruiting NCT04857112 - Study Evaluating Efficacy and Safety of Amiselimod (MT-1303) in Mild to Moderate Ulcerative Colitis Phase 2
Completed NCT05051943 - A Study of the Real-world Use of an Adalimumab Biosimilar and Evaluation of Nutritional Status on the Therapeutic Response
Active, not recruiting NCT04033445 - A Study of Guselkumab in Participants With Moderately to Severely Active Ulcerative Colitis Phase 2/Phase 3
Recruiting NCT05428345 - A Study of Vedolizumab SC Given to Adults With Moderate to Severe Ulcerative Colitis or Crohn's Disease in South Korea
Active, not recruiting NCT06221995 - Energy Expenditure in Patients With Ulcerative Colitis Undergoing Surgery
Recruiting NCT04767984 - Testing Atorvastatin to Lower Colon Cancer Risk in Longstanding Ulcerative Colitis Phase 2
Completed NCT02508012 - Medico-economic Evaluation of the Therapeutic Drug Monitoring of Anti-TNF-α Agents in Inflammatory Bowel Diseases N/A
Recruiting NCT06071312 - FMT in Patients With Recurrent CDI and Ulcerative Colitis: Single Infusion Versus Sequential Approach Phase 1/Phase 2
Completed NCT03760003 - Dose-Ranging Phase 2b Study of ABX464 in Moderate to Severe Ulcerative Colitis Phase 2
Not yet recruiting NCT05539625 - Mini-MARVEL - Mitochondrial Antioxidant Therapy in Ulcerative Colitis Phase 2