Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT03883412
Other study ID # 20320
Secondary ID
Status Recruiting
Phase Phase 4
First received
Last updated
Start date February 28, 2019
Est. completion date December 2025

Study information

Verified date December 2023
Source University of Virginia
Contact Lee Hartline, MEd
Phone 434-924-5247
Email lmh9d@virginia.eud
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The primary objective of this study is to examine whether exercise training alone, liraglutide treatment alone or exercise training plus liraglutide treatment increases cardiac and muscle capillary blood volume, improves vascular function in the larger conduit vessels, and enhances insulin's metabolic action in humans with Type 2 diabetes. Subjects will be randomized to one of the three groups: exercise training, liraglutide treatment, and exercise + liraglutide. They will be studied at the baseline and then after 16 weeks of intervention.


Description:

Our hypothesis is that sustained activation of the GLP-1 receptor with Liraglutide or exercise training will enhance microvascular perfusion, promote angiogenesis, and improve microvascular response to insulin in muscle, leading to increased muscle delivery of oxygen and nutrients and increased exercise tolerance in subjects with type 2 diabetes.


Recruitment information / eligibility

Status Recruiting
Enrollment 60
Est. completion date December 2025
Est. primary completion date June 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 21 Years to 60 Years
Eligibility Inclusion Criteria: - Age 21-60 - A1C = 8.5% - Never on GLP-1RA (eg: exenatide, liraglutide) or DPP4I ( eg: Sitaglipton) - On stable dose of oral hypoglycemic agents >4 months - On stable dose of other medications for >4 months Exclusion Criteria: - Taking Insulin - Smoking presently or in the past 6 months - BP >160/90 - BMI >35 - Family history of medullary thyroid cancer or multiple endocrine neoplasia syndrome - History of congestive heart failure, ischemic heart disease, severe pulmonary disease, liver or kidney disease. - Any vascular disease such as myocardial infarction, stroke, peripheral vascular disease - Presence of an intracardiac or intrapulmonary shunt (we will screen for this by auscultation during the physical exam by PI). - Pregnant or breastfeeding. - Known hypersensitivity to perflutren (contained in Definity)

Study Design


Intervention

Other:
Exercise
16 weeks of treatment
Drug:
Liraglutide
16 weeks of Liraglutide

Locations

Country Name City State
United States University of Virginia Charlottesville Virginia

Sponsors (3)

Lead Sponsor Collaborator
University of Virginia American Diabetes Association, National Institutes of Health (NIH)

Country where clinical trial is conducted

United States, 

References & Publications (44)

Akerstrom T, Laub L, Vedel K, Brand CL, Pedersen BK, Lindqvist AK, Wojtaszewski JF, Hellsten Y. Increased skeletal muscle capillarization enhances insulin sensitivity. Am J Physiol Endocrinol Metab. 2014 Dec 15;307(12):E1105-16. doi: 10.1152/ajpendo.00020.2014. Epub 2014 Oct 28. — View Citation

Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, Liu Z. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009 May;52(5):752-64. doi: 10.1007/s00125-009-1313-z. Epub 2009 Mar 13. — View Citation

Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP, Wasserman DH. Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance. Diabetes. 2013 Feb;62(2):572-80. doi: 10.2337/db12-0354. Epub 2012 Sep 21. — View Citation

Brendle DC, Joseph LJ, Corretti MC, Gardner AW, Katzel LI. Effects of exercise rehabilitation on endothelial reactivity in older patients with peripheral arterial disease. Am J Cardiol. 2001 Feb 1;87(3):324-9. doi: 10.1016/s0002-9149(00)01367-9. — View Citation

Chai W, Liu J, Jahn LA, Fowler DE, Barrett EJ, Liu Z. Salsalate attenuates free fatty acid-induced microvascular and metabolic insulin resistance in humans. Diabetes Care. 2011 Jul;34(7):1634-8. doi: 10.2337/dc10-2345. Epub 2011 May 26. — View Citation

Chai W, Wang W, Liu J, Barrett EJ, Carey RM, Cao W, Liu Z. Angiotensin II type 1 and type 2 receptors regulate basal skeletal muscle microvascular volume and glucose use. Hypertension. 2010 Feb;55(2):523-30. doi: 10.1161/HYPERTENSIONAHA.109.145409. Epub 2009 Dec 7. — View Citation

Clerk LH, Rattigan S, Clark MG. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes. 2002 Apr;51(4):1138-45. doi: 10.2337/diabetes.51.4.1138. — View Citation

Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006 May;55(5):1436-42. doi: 10.2337/db05-1373. — View Citation

Eggleston EM, Jahn LA, Barrett EJ. Hyperinsulinemia rapidly increases human muscle microvascular perfusion but fails to increase muscle insulin clearance: evidence that a saturable process mediates muscle insulin uptake. Diabetes. 2007 Dec;56(12):2958-63. doi: 10.2337/db07-0670. Epub 2007 Aug 24. — View Citation

Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res. 2002 Dec;56(3):464-71. doi: 10.1016/s0008-6363(02)00593-x. — View Citation

Eringa EC, Stehouwer CD, van Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P. Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H2043-8. doi: 10.1152/ajpheart.00067.2004. Epub 2004 Apr 1. — View Citation

Ernst EE, Matrai A. Intermittent claudication, exercise, and blood rheology. Circulation. 1987 Nov;76(5):1110-4. doi: 10.1161/01.cir.76.5.1110. — View Citation

Fakhry F, van de Luijtgaarden KM, Bax L, den Hoed PT, Hunink MG, Rouwet EV, Spronk S. Supervised walking therapy in patients with intermittent claudication. J Vasc Surg. 2012 Oct;56(4):1132-42. doi: 10.1016/j.jvs.2012.04.046. — View Citation

Gavin TP, Stallings HW 3rd, Zwetsloot KA, Westerkamp LM, Ryan NA, Moore RA, Pofahl WE, Hickner RC. Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans. J Appl Physiol (1985). 2005 Jan;98(1):315-21. doi: 10.1152/japplphysiol.00353.2004. Epub 2004 Aug 6. — View Citation

Hamburg NM, Balady GJ. Exercise rehabilitation in peripheral artery disease: functional impact and mechanisms of benefits. Circulation. 2011 Jan 4;123(1):87-97. doi: 10.1161/CIRCULATIONAHA.109.881888. No abstract available. — View Citation

Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res. 2007 Oct 26;101(9):948-56. doi: 10.1161/CIRCRESAHA.107.160630. Epub 2007 Sep 6. — View Citation

Hiatt WR, Wolfel EE, Meier RH, Regensteiner JG. Superiority of treadmill walking exercise versus strength training for patients with peripheral arterial disease. Implications for the mechanism of the training response. Circulation. 1994 Oct;90(4):1866-74. doi: 10.1161/01.cir.90.4.1866. — View Citation

Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014 May;21(4):301-14. doi: 10.1111/micc.12117. — View Citation

Honig CR, Odoroff CL, Frierson JL. Active and passive capillary control in red muscle at rest and in exercise. Am J Physiol. 1982 Aug;243(2):H196-206. doi: 10.1152/ajpheart.1982.243.2.H196. — View Citation

Inyard AC, Clerk LH, Vincent MA, Barrett EJ. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes. 2007 Sep;56(9):2194-200. doi: 10.2337/db07-0020. Epub 2007 Jun 11. — View Citation

Januszek R, Mika P, Konik A, Petriczek T, Nowobilski R, Nizankowski R. Effect of treadmill training on endothelial function and walking abilities in patients with peripheral arterial disease. J Cardiol. 2014 Aug;64(2):145-51. doi: 10.1016/j.jjcc.2013.12.002. Epub 2014 Jan 14. — View Citation

Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF, King GL. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999 Aug;104(4):447-57. doi: 10.1172/JCI5971. — View Citation

Kim JA, Koh KK, Quon MJ. The union of vascular and metabolic actions of insulin in sickness and in health. Arterioscler Thromb Vasc Biol. 2005 May;25(5):889-91. doi: 10.1161/01.ATV.0000164044.42910.6b. No abstract available. — View Citation

Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006 Apr 18;113(15):1888-904. doi: 10.1161/CIRCULATIONAHA.105.563213. — View Citation

Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK, Yki-Jarvinen H, Christin L, Secomb TW, Bogardus C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest. 1987 Aug;80(2):415-24. doi: 10.1172/JCI113088. — View Citation

Lindner JR, Womack L, Barrett EJ, Weltman J, Price W, Harthun NL, Kaul S, Patrie JT. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging. 2008 May;1(3):343-50. doi: 10.1016/j.jcmg.2008.04.001. — View Citation

Liu J, Jahn LA, Fowler DE, Barrett EJ, Cao W, Liu Z. Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans. J Clin Endocrinol Metab. 2011 Feb;96(2):438-46. doi: 10.1210/jc.2010-1174. Epub 2010 Nov 3. — View Citation

Liu Z, Liu J, Jahn LA, Fowler DE, Barrett EJ. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J Clin Endocrinol Metab. 2009 Sep;94(9):3543-9. doi: 10.1210/jc.2009-0027. Epub 2009 Jun 30. — View Citation

Olfert IM, Howlett RA, Tang K, Dalton ND, Gu Y, Peterson KL, Wagner PD, Breen EC. Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol. 2009 Apr 15;587(Pt 8):1755-67. doi: 10.1113/jphysiol.2008.164384. Epub 2009 Feb 23. — View Citation

Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006 May;7(5):359-71. doi: 10.1038/nrm1911. — View Citation

Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, Montagnani M. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H813-22. doi: 10.1152/ajpheart.00092.2005. Epub 2005 Mar 25. — View Citation

Rattigan S, Clark MG, Barrett EJ. Acute vasoconstriction-induced insulin resistance in rat muscle in vivo. Diabetes. 1999 Mar;48(3):564-9. doi: 10.2337/diabetes.48.3.564. — View Citation

Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol (1985). 2011 Jul;111(1):81-6. doi: 10.1152/japplphysiol.00141.2011. Epub 2011 Apr 21. — View Citation

Schlager O, Giurgea A, Schuhfried O, Seidinger D, Hammer A, Groger M, Fialka-Moser V, Gschwandtner M, Koppensteiner R, Steiner S. Exercise training increases endothelial progenitor cells and decreases asymmetric dimethylarginine in peripheral arterial disease: a randomized controlled trial. Atherosclerosis. 2011 Jul;217(1):240-8. doi: 10.1016/j.atherosclerosis.2011.03.018. Epub 2011 Apr 8. — View Citation

St-Pierre P, Keith LJ, Richards SM, Rattigan S, Keske MA. Microvascular blood flow responses to muscle contraction are not altered by high-fat feeding in rats. Diabetes Obes Metab. 2012 Aug;14(8):753-61. doi: 10.1111/j.1463-1326.2012.01598.x. Epub 2012 Apr 18. — View Citation

Stevens JW, Simpson E, Harnan S, Squires H, Meng Y, Thomas S, Michaels J, Stansby G. Systematic review of the efficacy of cilostazol, naftidrofuryl oxalate and pentoxifylline for the treatment of intermittent claudication. Br J Surg. 2012 Dec;99(12):1630-8. doi: 10.1002/bjs.8895. Epub 2012 Oct 3. — View Citation

Tang K, Breen EC, Gerber HP, Ferrara NM, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004 Jun 17;18(1):63-9. doi: 10.1152/physiolgenomics.00023.2004. Epub 2004 Jun 17. — View Citation

Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab. 2003 Jul;285(1):E123-9. doi: 10.1152/ajpendo.00021.2003. — View Citation

Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, Barrett EJ. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004 Jun;53(6):1418-23. doi: 10.2337/diabetes.53.6.1418. — View Citation

Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H, Barrett EJ. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1191-7. doi: 10.1152/ajpendo.00497.2005. — View Citation

Wallis MG, Wheatley CM, Rattigan S, Barrett EJ, Clark AD, Clark MG. Insulin-mediated hemodynamic changes are impaired in muscle of Zucker obese rats. Diabetes. 2002 Dec;51(12):3492-8. doi: 10.2337/diabetes.51.12.3492. — View Citation

Wheatley CM, Rattigan S, Richards SM, Barrett EJ, Clark MG. Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab. 2004 Oct;287(4):E804-9. doi: 10.1152/ajpendo.00077.2004. Epub 2004 Jun 22. — View Citation

Youd JM, Rattigan S, Clark MG. Acute impairment of insulin-mediated capillary recruitment and glucose uptake in rat skeletal muscle in vivo by TNF-alpha. Diabetes. 2000 Nov;49(11):1904-9. doi: 10.2337/diabetes.49.11.1904. — View Citation

Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT, Shannon RP. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006 Jun;317(3):1106-13. doi: 10.1124/jpet.106.100982. Epub 2006 Feb 17. — View Citation

* Note: There are 44 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Microvascular Blood Volume - change from baseline measured at baseline and 16 weeks 16 weeks
Secondary Augmentation Index - change from baseline measured at baseline and 16 weeks 16 weeks
Secondary Flow Mediated Dilation - change from baseline measured at baseline and 16 weeks 16 weeks
Secondary Pulse Wave Velocity - change from baseline measured at baseline and 16 weeks 16 weeks
Secondary Post Ischemic Flow Velocity-Change from baseline measured at baseline and 16 weeks 16 weeks
Secondary Insulin Sensitivity-Change from baseline measured at baseline and 16 weeks 16 weeks
See also
  Status Clinical Trial Phase
Recruiting NCT03239366 - A Study to Evaluate the Effect of BioK+ 50B® on Glycemic Control in a Type 2 Diabetes Population Phase 2
Completed NCT04597229 - Efficacy of Multigrain Supplementation in Type II Diabetes Mellitus N/A
Completed NCT03623139 - Effects of Basic Carbohydrate Counting Versus Standard Outpatient Nutritional Education in Type 2 Diabetes N/A
Active, not recruiting NCT04599920 - Effects of Replacing Red Meat With Legumes on Biomarkers of Chronic Diseases in Healthy Men (Leg4Life) N/A
Active, not recruiting NCT03422471 - Hypoglycemia and Autonomic Nervous System Function- B2 N/A
Completed NCT04382521 - A Text Message Intervention to Promote Health Behaviors in Cardiac Risk Conditions N/A
Recruiting NCT04564391 - Whey or Casein - Liver Fat Reduction and Metabolic Improvement by Fast vs. Slow Proteins N/A
Recruiting NCT03458715 - The Efficacy of Sodium-glucose Co-transporter 2 Inhibitor or Dipeptidyl Peptidase-4 Inhibitor in Type 2 Diabetes Patients With Premix Insulin Phase 4
Terminated NCT03278236 - Does Time Restricted Feeding Improve Glycaemic Control in Overweight Men? N/A
Completed NCT02974504 - Phase IV Clinical Trial to Investigate the Effect on Blood Glucose of Evogliptin in Patients With Type 2 Diabetes(EVERGREEN) Phase 4
Completed NCT05053828 - Type 2 Diabetes With Antiplatelet Drugs
Not yet recruiting NCT03659383 - The Exploration of Optimal Treatment Scheme in Patients With Type 2 Diabetes Inadequately Controlled With Glargine Phase 4
Completed NCT03542240 - Effects of Curcumin Supplementation on Gut Barrier Function in Patients With Metabolic Syndrome N/A
Completed NCT03657537 - Effects of Ketone Bodies on Cognition in Type 2 Diabetes Phase 1
Completed NCT03979768 - Risk Assessment of Type 2 Diabetes in Pharmacies N/A
Completed NCT03614039 - Effect of Probiotic and Smectite Gel on NAFLD N/A
Active, not recruiting NCT04994288 - A Study of Efficacy and Safety of Supaglutide in Type 2 Diabetes Patients Phase 2/Phase 3
Completed NCT03290768 - Continuous Glucose Monitors to Regulate Glucose Levels in Type 2 Diabetics - (Protocol 3) N/A
Enrolling by invitation NCT04088851 - "The Role of the Liver for Interorgan Metabolic Crosstalk in Type 2 Diabetes" N/A
Completed NCT03643783 - Impact of Plasma Soluble Prorenin Receptor in Obese and Type 2 Diabetic Patients