Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to determine whether dendritic cells collected via leukapheresis and incubated with antisense DNA oligonucleotides and then injected back into the same subject will serve as modulators of the immune system in a manner that disrupts the autoimmune process responsible for the destruction of pancreatic beta cells in subjects with new onset type 1 diabetes.


Clinical Trial Description

This is a double-blind, placebo-controlled cross study designed to evaluate the safety and efficacy of autologous immunoregulatory dendritic cells (iDC) in patients with type 1 diabetes. To do this, a total of 24 subjects with recent onset (<100 days from diagnosis) type 1 diabetes will have circulating dendritic cells harvested via leukapheresis. The harvested dendritic cells will then be incubated in vitro with antisense DNA oligonucleotides targeting the primary transcripts of cluster of differentiation antigen 40 (CD40), cluster of differentiation antigen 80 (CD80) and cluster of differentiation antigen 86 (CD86). These engineered dendritic cells will then be given as autologous intradermal injections (4 injections administered at 2 week intervals) in the subject' peri-umbilical region. The hypothesis is that the injected cells will generate immunoregulatory cells that suppress the autoimmune process responsible for the development of type 1 diabetes via destruction of the subject's pancreatic beta cells. Employing a cross-over design, all subjects will undergo leukapheresis at the outset. Twelve subjects will be randomly assigned to receive cell injections at the outset while the other 12 subjects will receive sham injections and serve as controls. At the end of 12 months, all subjects will cross-over to the alternative treatment and continue to be followed for an additional 12 months. (Note: The subjects assigned to receive the cell therapy for this segment will receive injections of their autologous cells harvested and engineered at the time of the leukapheresis performed at study entry. The engineered cells will be stored frozen until needed for administration. This design will test whether treatment later (>1 year after diagnosis) is as effective as immediate treatment (<100 days from the diagnosis of type 1 diabetes). As an added safety measure, the first 6 subjects randomized will all be over the age of 18. When the last of these 6 subjects complete 3 months of observation following the initiation of therapy, the age for enrollment will be lowered to age 16 for the next 6 subjects unless safety observations dictate otherwise. When all subjects in this cohort have been enrolled, the age for enrollment will be lowered to age 14 unless advised otherwise by the independent Data Safety Monitoring Board. When all subjects in this cohort have completed observation for 3 months, the age for enrollment will be lowered to age 12 following clearance by the Data Safety Monitoring Board. If this therapy is successful, the subjects' remaining beta cell mass will be preserved and hopefully expanded once the autoimmune process is slowed or stopped. This outcome will be assessed indirectly using plasma c-peptide concentrations following ingestion of a standardized mixed meal at the end of 12 and 24 months of therapy. If the treatment is successful, glucose control should improve and be detectable via measurement of hemoglobin A1c (measure of long-term control), fasting plasma glucose concentrations and the plasma glucose concentrations following ingestion of the standardized mixed meal. In addition, the total daily insulin requirements should decrease. These measures of glucose control will be assessed at baseline and then at 3, 6, 9, 12, 15, 18, 21 and 24 months. Immune markers will also be profiled at 3 month intervals to assess potential tolerogenic effects of the therapy. To this end, numbers of potentially tolerogenic/regulatory T-cells, B-cells and dendritic cells in the circulating peripheral blood monocyte population will be assessed. In addition, analysis of selected populations of T-cells, B-cells and dendritic cells will be conducted over the entire study period in an attempt to identify molecular signatures correlated with the clinical response. Finally, in addition to the routine safety laboratory measurements, all reported adverse events will be examined in detail to characterize the safety aspects of the therapy. The review of these safety data will be guided by an independent Data Safety Monitoring Board which will meet at least semi-annually to review the accrued data. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02354911
Study type Interventional
Source DiaVacs, Inc.
Contact
Status Withdrawn
Phase Phase 2
Start date October 2015
Completion date February 16, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05653518 - Artificial Pancreas Technology to Reduce Glycemic Variability and Improve Cardiovascular Health in Type 1 Diabetes N/A
Enrolling by invitation NCT05515939 - Evaluating the InPen in Pediatric Type 1 Diabetes
Completed NCT05109520 - Evaluation of Glycemic Control and Quality of Life in Adults With Type 1 Diabetes During Continuous Glucose Monitoring When Switching to Insulin Glargine 300 U/mL
Recruiting NCT04016987 - Automated Structured Education Based on an App and AI in Chinese Patients With Type 1 Diabetes N/A
Active, not recruiting NCT04190368 - Team Clinic: Virtual Expansion of an Innovative Multi-Disciplinary Care Model for Adolescents and Young Adults With Type 1 Diabetes N/A
Recruiting NCT05413005 - Efficacy of Extracorporeal Photopheresis (ECP) in the Treatment of Type 1 Diabetes Mellitus Early Phase 1
Active, not recruiting NCT04668612 - Dual-wave Boluses in Children With Type 1 Diabetes Insulin Boluses in Children With Type 1 Diabetes N/A
Completed NCT02837094 - Enhanced Epidermal Antigen Specific Immunotherapy Trial -1 Phase 1
Recruiting NCT05414409 - The Gut Microbiome in Type 1 Diabetes and Mechanism of Metformin Action Phase 2
Recruiting NCT05670366 - The Integration of Physical Activity Into the Clinical Decision Process of People With Type 1 Diabetes N/A
Active, not recruiting NCT05418699 - Real-life Data From Diabetic Patients on Closed-loop Pumps
Completed NCT04084171 - Safety of Artificial Pancreas Therapy in Preschoolers, Age 2-6 N/A
Recruiting NCT06144554 - Post Market Registry for the Omnipod 5 System in Children and Adults With Type 1 Diabetes
Recruiting NCT05153070 - Ciclosporin Followed by Low-dose IL-2 in Patients With Recently Diagnosed Type 1 Diabetes Phase 2
Recruiting NCT05379686 - Low-Dose Glucagon and Advanced Hybrid Closed-Loop System for Prevention of Exercise-Induced Hypoglycaemia in People With Type 1 Diabetes N/A
Completed NCT05281614 - Immune Effects of Vedolizumab With or Without Anti-TNF Pre-treatment in T1D Early Phase 1
Withdrawn NCT04259775 - Guided User-initiated Insulin Dose Enhancements (GUIDE) to Improve Outcomes for Youth With Type 1 Diabetes N/A
Active, not recruiting NCT01600924 - Study on the Assessment of Determinants of Muscle and Bone Strength Abnormalities in Diabetes
Completed NCT02750527 - Pediatric Population Screening for Type 1 Diabetes and Familial Hypercholesterolemia in Lower Saxony, Germany
Completed NCT02897557 - Insulet Artificial Pancreas Early Feasibility Study N/A