Clinical Trials Logo

Clinical Trial Summary

People with type 1 diabetes often find exercise very difficult to manage, because of the high risk for low blood glucose levels. This can occur very quickly once exercise starts and presents many risks for subjects, such as severe symptoms, confusion, passing out, seizures, and even coma or death in very severe cases. Preventing low blood glucose levels during and after exercise is important because physical exercise is a key component of managing diabetes. It is often hard to correctly adjust insulin infusion rates or doses before exercise as the relationship between exercise and changes in glucose levels in those who have type 1 diabetes is still not fully understood. Therefore, the investigators propose this study to further our understanding in this area.

This study is designed to help separate the effects of insulin from those of muscle work (non-insulin effects) on the changes in blood glucose levels during aerobic exercise. The main hypothesis is that the non-insulin effects occur quickly during exercise and account for the rapid change in blood glucose levels once aerobic exercise begins. These effects can be separated from the slower changes in insulin sensitivity that occur because of exercise, and which account for reduced insulin demand even after exercise has stopped. The investigators will investigate the effects of both moderate and intense aerobic exercise at different levels of insulin in the body to help separate the insulin and non-insulin effects.

The investigators wish to recruit 26 subjects to take part in this study. Subjects will be randomly divided into two groups, with 13 in each group. Group 1 will undergo moderate aerobic exercise, while group 2 will undergo intense aerobic exercise. Each subject will repeat the exercise study three times on three separate days at least 2 weeks apart, while having insulin infused at a low, a medium, and a high rate. Subjects will have an IV line placed in each arm, one for drawing blood relatively frequently during the study, and another for infusion of insulin, glucose, and a special glucose tracer (non-radioactive). Each study lasts about 9 hours.

Information from this study will be used to help develop a mathematical model of how glucose changes during exercise in type 1 diabetes. Such a model of type 1 diabetes and exercise will be very useful for adjusting insulin doses in patients who use multiple daily injections of insulin, and can help to guide an automated insulin delivery system, such as the artificial pancreas.


Clinical Trial Description

Diabetes mellitus afflicts close to 10% of our population and 5% of those with diabetes have type 1, which is defined by an absolute deficiency of insulin. The need for managing diabetes is critical, given the economic burden of this disease, with over $175 billion dollars in direct health care costs, and almost another $70 billion in indirect costs for disability and work loss. The personal impact is equally as important for people with this disease, as diabetes mellitus is the leading cause of blindness, the need for kidney dialysis, and non-traumatic amputations in the United States. Type 2 diabetes is associated with reduced insulin sensitivity and the metabolic syndrome, and dietary modification and exercise are important components in the management of underlying insulin resistance. However, these lifestyle strategies are also important in type 1 diabetes for many reasons: 1) type 1 diabetes subjects now live into adulthood, when insulin resistance and obesity become factors for glycemic control, 2) latent autoimmune diabetes of adulthood (LADA) represents a "mixed" form of autoimmune diabetes where some type 2 diabetes characteristics such as insulin resistance can exist, and 3) dietary modification and exercise remain effective means for management of acute hyperglycemia and, in the longer term, HbA1c, potentially reducing the risk of microvascular complications. Therefore, the need for exercise is still evident in subjects with type 1 diabetes to maintain good glycemic control and to prevent complications from developing. However, exercise is challenging for people with T1D to manage. Exercise causes increased insulin sensitivity along with rapid uptake of glucose by muscle and other tissues within the body, leading to a sharp decline in glucose levels and hypoglycemia as shown by other groups as well as ours.

Without adjustments in insulin for exercise, hypoglycemia is common in persons with type 1 diabetes. In a study of 48 individuals with T1D, with no adjustments to insulin, who exercise for 60 min at a moderate intensity, glucose levels dropped on average by 40%, with 52% of subjects falling to 70 mg/dL or below. Despite this clear need for insulin adjustments for exercise, there are no uniform recommendations on how to dose insulin around the time of exercise. In 2006, the DirecNet Study Group published a study on the impact of suspending basal insulin at the start of exercise in 40 children with type 1 diabetes on insulin pump therapy. This intervention significantly reduced hypoglycemia (from 43% to 16%), but much more commonly resulted in hyperglycemia (increased from 4% to 23%). Schiavon and Cobelli et al addressed this issue of how to best adjust insulin for exercise using in silico simulations. Adjusting insulin doses in the in silico environment decreased hypoglycemia from 88% to 16% of patients when a universal adjustment was applied, and to 4% when an individual adjustment was applied.

The study described within this protocol is designed to disambiguate the impact of exercise on insulin and non-insulin mediated effects on glycemic control. To achieve this, the investigators will perform a series of stable glucose tracer studies in which subjects will be fasting for about 8 hours and will undergo aerobic exercise at a moderate and intense level for 45 minutes while insulin rates are clamped at a low (subject's basal rate), medium (basal x 1.5), and high (basal x 3) insulin infusion rate. Subject's basal rates will be obtained from injected basal insulin amounts, such as NPH/glargine/detemir, or basal rates in those who use insulin pumps and will be adjusted for the HbA1c, as described in the OHSU AP system. Di-deuterated glucose (6,6-2H2-glucose) which is not radioactive and which can be metabolized via usual pathways in the human body will be the stable tracer. Each subject per arm will undergo 3 10-hour studies while blood glucose, insulin, and glucagon levels are captured throughout the study, and catecholamine and fatty acid levels are captured during and just after the exercise period, as outlined below. Glucose tracer levels will be measured at OHSU through the Bioanalytical Shared Resource/PK core lab, and calculation of rate of appearance (Ra) and rate of disappearance (Rd) of glucose will be performed by our colleagues at McGill University using a non-steady state model of glucose dynamics.

The data obtained from this study will inform an updated model of glucose regulation in type 1 diabetes, providing exercise as an input to the model, which will be utilized in a model predictive control (MPC) system for managing type 1 diabetes. Such a system can be used to deliver insulin and/or glucagon to manage glycemic changes during and outside of exercise. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03090451
Study type Interventional
Source Oregon Health and Science University
Contact
Status Completed
Phase N/A
Start date May 1, 2017
Completion date June 18, 2019

See also
  Status Clinical Trial Phase
Completed NCT04476472 - Omnipod Horizon™ Automated Glucose Control System Preschool Cohort N/A
Completed NCT03635437 - Evaluation of Safety and Diabetes Status Upon Oral Treatment With GABA in Patients With Longstanding Type-1 Diabetes Phase 1/Phase 2
Completed NCT04909580 - Decision Coaching for Youth and Parents Considering Insulin Delivery Methods for Type 1 Diabetes N/A
Active, not recruiting NCT00679042 - Islet Transplantation in Type 1 Diabetic Patients Using the University of Illinois at Chicago (UIC) Protocol Phase 3
Completed NCT03293082 - Preschool CGM Use and Glucose Variability in Type 1 Diabetes N/A
Completed NCT04016662 - Automated Insulin Delivery in Elderly With Type 1 Diabetes (AIDE T1D) Phase 4
Completed NCT02527265 - Afrezza Safety and Pharmacokinetics Study in Pediatric Patients Phase 2
Completed NCT03738865 - G-Pen Compared to Glucagen Hypokit for Severe Hypoglycemia Rescue in Adults With Type 1 Diabetes Phase 3
Completed NCT03240432 - Wireless Innovation for Seniors With Diabetes Mellitus N/A
Completed NCT03168867 - Effectiveness Trial of an E-Health Intervention To Support Diabetes Care in Minority Youth (3Ms) N/A
Completed NCT03674281 - The VRIF Trial: Hypoglycemia Reduction With Automated-Insulin Delivery System N/A
Completed NCT03669770 - Ultrasound Classification and Grading of Lipohypertrophy and Its Impact on Glucose Variability in Type 1 Diabetes
Recruiting NCT03682640 - Azithromycin Insulin Diet Intervention Trial in Type 1 Diabetes Phase 2
Recruiting NCT04096794 - Chinese Alliance for Type 1 Diabetes Multi-center Collaborative Research
Completed NCT02882737 - The Impact of Subcutaneous Glucagon Before, During and After Exercise a Study in Patients With Type 1 Diabetes Mellitus N/A
Recruiting NCT02745808 - Injectable Collagen Scaffold™ Combined With HUC-MSCs for the Improvement of Erectile Function in Men With Diabetes Phase 1
Completed NCT02596204 - Diabetes Care Transformation: Diabetes Data Registry and Intensive Remote Monitoring N/A
Withdrawn NCT02579148 - Collagen Scaffolds Loaded With HUCMSCs for the Improvement of Erectile Function in Men With Diabetes Phase 1
Withdrawn NCT02518022 - How to be Safe With Alcoholic Drinks in Diabetes N/A
Completed NCT02562313 - A Trial Investigating the Continuous Subcutaneous Insulin Infusion of a Liquid Formulation of BioChaperone Insulin Lispro in Comparison to Humalog® Phase 1