Clinical Trials Logo

Clinical Trial Summary

The investigators aim to show that quantitative analysis of doppler flow velocity waveforms i.e. ultrasound which is a non−invasive and very safe means of assessing blood flow; recorded in the proximity of terminal microvascular beds of interest, (i.e. the forearm and ocular circulation) can sensitively detect and track local changes in microvascular haemodynamics i.e. the function of the small blood vessels that are found in the back of the eye and in the forearm.

The investigators also aim to relate change in the doppler spectral flow velocity waveform i.e. the ultrasound signal, in the central retinal artery to changes in geometry and tone of the vasculature (or changes in the structure and function of small blood vessels) in response to inhaled oxygen and carbon dioxide. The geometry and tone of the vasculature (or Blood Vessels) can be measured by taking photographs of the back of the eye.


Clinical Trial Description

Diabetes mellitus significantly increases the risk for both small and large blood vessel complications e.g. diabetic eye problems and coronary heart disease. Vital organs such as the eye, kidney, heart and brain represent well− recognized preferential targets in patients with diabetes mellitus. The presence of such end−organ damage powerfully influences cardiovascular risk and the benefits of therapeutic interventions. Unfortunately, by the time symptoms develop or events occur as manifestations of target−organ damage, the disease process is already at an advanced stage. Although not traditionally viewed as an end−organ, it is altered structure and function of arterial small blood vessels that acts as the substrate for accelerated disease development and the increased occurrence of vascular events in patients with diabetes mellitus. The ability to detect and monitor sub−clinical damage, representing the cumulative and integrated influence of all risk factors in impairing arterial wall integrity, holds potential to further refine cardiovascular risk stratification and enable early intervention to prevent or attenuate disease progression.

Data derived from analysis of arterial waveforms, that marks the presence of impaired pulsatile function in the arterial system, has been shown to predict future cardiovascular risk. As consistent abnormalities in the arterial pulse wave shape have been recognized for many years in diabetic subjects there has been a growing interest in quantifying changes in the pulse contour to provide information about the status of the vasculature in diabetes. These original observations have been confirmed in more recent studies in patients with type 1 and type 2 diabetes mellitus and are detected prior to the development of clinical complications of the disease.

Analysis of the pulse contours recorded from sites in large conduit arteries identify structural and functional abnormalities predominantly in the systemic microvasculature, as small arteries and arterioles are recognised as the major sites for wave reflection that alters pulse contour morphology. It is recognised that techniques providing a global assessment of the circulation may not capture and cannot localise findings to a specific site or target−organ of interest in the arterial system. Microcirculation is a collective term for the smallest segments of the vascular system and is a major site of control of vascular resistance. It includes arterioles and capillaries and is considered to be a continuum rather than a distinct site of resistance control. Importantly, it is recognised as sites were the earliest manifestations of cardiovascular disease, especially inflammatory processes occur. The microvasculature may therefore constitute a preferential target or be primarily involved in the pathogenesis of disease and represents an important regional target for therapeutic interventions. Further, retinal photography and standardised grading provides a unique opportunity to study retinal microvascular characteristics including retinopathy and change in arteriolar (or blood vessel) structure and function. Improved methods of assessment to study the retinal microvascular network holds potential to improve prediction of risk, identify high risk groups and act as a window to monitor the effects of possible drug interventions. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01045005
Study type Interventional
Source Queen's University, Belfast
Contact
Status Withdrawn
Phase N/A
Start date January 2006
Completion date July 2010

See also
  Status Clinical Trial Phase
Completed NCT04476472 - Omnipod Horizon™ Automated Glucose Control System Preschool Cohort N/A
Completed NCT03635437 - Evaluation of Safety and Diabetes Status Upon Oral Treatment With GABA in Patients With Longstanding Type-1 Diabetes Phase 1/Phase 2
Completed NCT04909580 - Decision Coaching for Youth and Parents Considering Insulin Delivery Methods for Type 1 Diabetes N/A
Active, not recruiting NCT00679042 - Islet Transplantation in Type 1 Diabetic Patients Using the University of Illinois at Chicago (UIC) Protocol Phase 3
Completed NCT03293082 - Preschool CGM Use and Glucose Variability in Type 1 Diabetes N/A
Completed NCT04016662 - Automated Insulin Delivery in Elderly With Type 1 Diabetes (AIDE T1D) Phase 4
Completed NCT02527265 - Afrezza Safety and Pharmacokinetics Study in Pediatric Patients Phase 2
Completed NCT03738865 - G-Pen Compared to Glucagen Hypokit for Severe Hypoglycemia Rescue in Adults With Type 1 Diabetes Phase 3
Completed NCT03240432 - Wireless Innovation for Seniors With Diabetes Mellitus N/A
Completed NCT03168867 - Effectiveness Trial of an E-Health Intervention To Support Diabetes Care in Minority Youth (3Ms) N/A
Completed NCT03674281 - The VRIF Trial: Hypoglycemia Reduction With Automated-Insulin Delivery System N/A
Completed NCT03669770 - Ultrasound Classification and Grading of Lipohypertrophy and Its Impact on Glucose Variability in Type 1 Diabetes
Recruiting NCT03682640 - Azithromycin Insulin Diet Intervention Trial in Type 1 Diabetes Phase 2
Recruiting NCT04096794 - Chinese Alliance for Type 1 Diabetes Multi-center Collaborative Research
Completed NCT02882737 - The Impact of Subcutaneous Glucagon Before, During and After Exercise a Study in Patients With Type 1 Diabetes Mellitus N/A
Recruiting NCT02745808 - Injectable Collagen Scaffold™ Combined With HUC-MSCs for the Improvement of Erectile Function in Men With Diabetes Phase 1
Withdrawn NCT02518022 - How to be Safe With Alcoholic Drinks in Diabetes N/A
Withdrawn NCT02579148 - Collagen Scaffolds Loaded With HUCMSCs for the Improvement of Erectile Function in Men With Diabetes Phase 1
Completed NCT02562313 - A Trial Investigating the Continuous Subcutaneous Insulin Infusion of a Liquid Formulation of BioChaperone Insulin Lispro in Comparison to Humalog® Phase 1
Completed NCT02596204 - Diabetes Care Transformation: Diabetes Data Registry and Intensive Remote Monitoring N/A