View clinical trials related to Tumor Skin.
Filter by:This is a study to investigate the safety and efficacy of an investigational OBX-115 regimen in adult participants with advanced solid tumors.
Cutaneous melanoma is a bad prognosis skin cancer, which can be treated with immune checkpoint inhibitors (ICI), such as anti-PD-1 (nivolumab, nivo) and anti-CTLA-4 (ipilimumab, ipi). However, about 50% of patients do not respond or relapse within 3 years post therapy induction, and immune-related adverse events (irAEs), such as colitis, are triggered and can be treated with TNF inhibitor (TNFi; ie, infliximab, inflix). The pharmacodynamic impact of TNFi on the immune and clinical responses remain to be clarified. The investigators previously demonstrated that TNFi enhance the efficacy of ICI in mouse melanoma models. Based on preclinical findings, the investigators implemented two clinical trials in advanced melanoma patients, TICIMEL and MELANFalpha. In TICIMEL, patients are concomitantly treated with TNFi [certolizumab (certo) or inflix] and ICI (ipi+nivo). In MELANFalpha, patients are treated with ICI alone. Preliminary results show both tritherapies promote systemic MART-1 specific CD8 T cell responses and that certo but not inflix may improve ICI efficacy and Th1 responses. In mouse melanoma models, TNFi enhance the response to ICI. Investigators' primary objective is to decipher how certolizumab and infliximab influence ICI-dependent anti-tumor immune responses in advanced melanoma patients. The secondary objectives are to analyse the cellular and molecular impact anti-TNF have on ICI-dependent anti-melanoma immune responses and clinical activities (irAEs and efficacy). By combining mouse and human data as well ex vivo functional assays, the investigators will dissect the impact treatments have on anti-melanoma immune responses by flow cytometry and transcriptomic analyses. The investigators expect to clarify (i) the mechanisms by which TNFi enhance ICI efficacy, (ii) identify the best TNFi to be combined with ICI in advanced melanoma patients and (iii) discover TNF-dependent biomarkers of resistance.
The goal of this clinical trial is to develop an imaging platform for intraoperative tumor margin delineation in 250 cases of tumor-suffered patients. The main questions it aims to answer are: • to develop the protocol of rapid assessment of surgical specimens without need for fixation, embedding, and cryosectioning required for conventional histopathology. Participants will provide a small piece of their surgical specimens from tumor removal surgery . If there is a comparison group: Researchers will compare normal specimens to see if we can observe the difference.
This protocol will take measurements of a variety of tumors involving the skin in order to assess changes in tumor oxygen from hyperoxygenation therapy and standard cancer-directed treatments, to demonstrate the clinical feasibility of using in vivo Electron Paramagnetic Resonance (EPR) Oximetry to obtain clinically useful measurements of tumor oxygen levels from cancer patients.