View clinical trials related to Tropical Spastic Paraparesis.
Filter by:This is a pilot study of intervention in a group of patients with tropical spastic paraparesis/ myelopathy to evaluate virologic and clinical response of raltegravir plus zidovudine in this group of patients.
Urological physical therapy is described to improve urinary symptoms in patients with myelopathy or neurological dysfunction and to increase the quality of life. Although it was never tested on HTLV-1 associated overactive bladder syndrome, an disabling disease that is common seen in HAM/TSP patients but can also appear as an isolated form. Our hypothesis is that urological physical therapy can improve urinary symptoms like incontinence, urgency and nocturia in HTLV-1 infected population with those complains.
In this study the investigators are going to evaluate the efficacy pentoxifyline in HTLV-1 patients with neurological diseases: HAM/TSP or neurogenic bladder. In some laboratory experiments the investigators observed that this drug had the capacity to reduce the immune response in HTLV-1 infected cells. Since the exacerbated immune response is know to cause neurological disease in patients with HTLV-1 the investigators hope that pentoxifyline can alleviate symptoms and delay the progress of HAM/TSP in patients.
This study will use three different magnetic resonance imaging (MRI) techniques to study HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/STP)-a disease of slowly progressive weakness in the legs. It is not known how the HTLV-1 virus causes this disease, but it is thought that as the body's immune system tries to destroy the virus, parts of the nervous system-primarily the spinal cord-are damaged. Patients 18 years of age and older with HAM/TSP and healthy normal volunteers may be eligible for this study. Participants will undergo diffusion tensor MRI, MR-spectroscopy, and magnetization transfer imaging to look at different compositional, architectural, and microscopic properties of the brain. All of these techniques are similar to conventional MRI, and like the conventional method they use a strong magnetic field and radio waves to measure structural and chemical changes in brain tissue. Each of the three scans will be done on separate days, each lasting about 1 hour. For the procedures, the patient or volunteer lies on a stretcher in a narrow metal cylinder (the scanner) and is asked to remain still for 15 to 30 minutes at a time. A special lightweight coil may be placed on the head to enhance the brain images. The subject can communicate with the person doing the scan at all times.
HTLV stands for human T cell leukemia virus. HTLV-1 is a virus that attacks specific kinds of white blood cells called T cells. T cells are part of the natural defense system of the body. HTLV-1 has been associated with leukemia and lymphoma. In addition, approximately 1% of all patients infected with HTLV-1 develops a condition known as HTLV-1 associated myelopathy (HAM) / tropical spastic paraparesis (TSP). Currently there is no clearly defined, effective treatment for patients with HAM/TSP. Steroids have been used as therapy but have only been able to provide temporary relief of symptoms. Human interferon is a small protein released from different kinds of cells in the body. Interferon has been known to have antiviral and immunological effects and has been used to treat hepatitis and multiple sclerosis. Interferon Beta is released from cells called fibroblasts. These cells play a role in the production of connective tissue. The purpose of this study is to evaluate the possible role of recombinant interferon beta (Avonex) in treatment of HAM/TSP. The study is broken into three phases, a pre-treatment phase, a treatment phase, and a post-treatment phase. The total duration of the study will be 44 weeks. Patients participating in this study will receive injections of Avonex 1 to 2 times a week. Throughout the study patients will regularly submit blood samples and undergo diagnostic tests such as MRI and measures of somatosensory evoked potentials.
Multiple sclerosis (MS) is a disease of the nervous system. The exact cause of MS is unknown, but it is believed to be an autoimmune condition. Autoimmune conditions are diseases that cause the body's immune system and natural defenses to attack healthy cells. In the case of MS, the immune system begins attacking myelin, the cells that make up the sheath covering nerves. Without myelin, nerves are unable to transmit signals effectively and symptoms occur. This study is directed toward a better understanding of the cause of Multiple Sclerosis (MS). Researchers will evaluate patients with a tentative diagnosis of MS or other neurological diseases possibly caused by a immunological reaction. Patients will undergo a series of three MRIs, taken once a month for three months and submit blood samples for immunological studies.