Traumatic Spinal Cord Injury Clinical Trial
— ExSCIPOfficial title:
Exoskeleton Training for Spinal Cord Injury Neuropathic Pain (ExSCIP): Protocol for a Phase 2 Feasibility Randomised Trial
The goal of this feasibility trial is to learn if exoskeleton or robotic walking works to reduce nerve (neuropathic) pain after spinal cord injury. This study asks is: - Providing walking practice through use of a robotic device (exoskeleton) three times per week for twelve weeks possible to deliver? - Would people sign up and stick to the programme? - And will it help to reduce neuropathic pain levels after spinal injury? Researchers will compare robotic walking and a relaxation program to see if robotic walking works to reduce neuropathic pain levels after spinal injury. Participants will: - Complete a number of questionnaires and tests related to their pain before the trial. - Complete robotic walking or a relaxation program three times per week for twelve weeks. - Complete the same questionnaires and tests after the trial finishes and 6 months after. - Complete an interview telling researchers about their experiences of the trial.
Status | Not yet recruiting |
Enrollment | 40 |
Est. completion date | November 30, 2026 |
Est. primary completion date | February 28, 2026 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion Criteria: - Individuals who are between 18 and 65 years old - Confirmed traumatic SCI (injury resulted from an external physical impact and not an acute or chronic disease process) of >6 months duration with complete or incomplete paraplegia or tetraplegia. - Individuals with above confirmed traumatic SCI who have below-level NP (> 3 levels below neurological level and/or extending to at-level region) starting after the SCI and persisting for > 3 continuous months, despite pharmacotherapy. - NP will be confirmed based on a neurological examination, a score of =4 on the Douleur Neuropathique 4 (DN4) (48) and a comprehensive pain history supported by the use of the ISCIP Pain Classification. They endorse one or more of the following pain descriptors to assist in confirmation of below level NP "'hot-burning', 'tingling', 'pricking', 'pins and needles', 'sharp', 'shooting', 'squeezing', 'painful cold' and 'electric shock-like'" (45). - Moderate and severe NP as confirmed above will be described as pain = 3 and = 6 on the 0-10 Numerical Rating Scale (NRS) for NP (averaged over a week). - Exoskeleton naive - Stable medication regimen - Have the capacity to provide informed consent. Exclusion Criteria: - Non-traumatic SCI, cauda equina lesions or Guillain Barré diagnoses - NP intensities of <3 (NRS) or nociceptive pain profiles only based on the ISCIP pain classification convention. - Recent lower limb fracture - Inadequate bone density (z score < -2) - Anthropometric measurements incompatible with the exoskeleton device (i.e. height >1.9m, weight >100kgs, significant lower limb spasticity) - Unstable comorbid medical condition/psychiatric condition/medication regimen - Planned surgery coinciding with intervention - Pregnancy - Drug and alcohol abuse |
Country | Name | City | State |
---|---|---|---|
n/a |
Lead Sponsor | Collaborator |
---|---|
University College Dublin | Royal College of Surgeons, Ireland, University of Aarhus |
Austin PD, Siddall PJ. Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: A scoping review. J Spinal Cord Med. 2021 Jan;44(1):8-18. doi: 10.1080/10790268.2019.1575554. Epub 2019 Feb 1. — View Citation
Bates D, Maechler M, Bolker B, Walker S, Christensen RH, Singmann H, Dai B, Grothendieck G, Green P, Bolker MB. Package 'lme4'. convergence. 2015 Oct 6;12(1):2.
Boord P, Siddall PJ, Tran Y, Herbert D, Middleton J, Craig A. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord. 2008 Feb;46(2):118-23. doi: 10.1038/sj.sc.3102077. Epub 2007 May 15. — View Citation
Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, Cunin G, Fermanian J, Ginies P, Grun-Overdyking A, Jafari-Schluep H, Lanteri-Minet M, Laurent B, Mick G, Serrie A, Valade D, Vicaut E. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005 Mar;114(1-2):29-36. doi: 10.1016/j.pain.2004.12.010. Epub 2005 Jan 26. — View Citation
Bryce TN, Biering-Sorensen F, Finnerup NB, Cardenas DD, Defrin R, Lundeberg T, Norrbrink C, Richards JS, Siddall P, Stripling T, Treede RD, Waxman SG, Widerstrom-Noga E, Yezierski RP, Dijkers M. International spinal cord injury pain classification: part I. Background and description. March 6-7, 2009. Spinal Cord. 2012 Jun;50(6):413-7. doi: 10.1038/sc.2011.156. Epub 2011 Dec 20. — View Citation
Bryce TN, Richards JS, Bombardier CH, Dijkers MP, Fann JR, Brooks L, Chiodo A, Tate DG, Forchheimer M. Screening for neuropathic pain after spinal cord injury with the spinal cord injury pain instrument (SCIPI): a preliminary validation study. Spinal Cord. 2014 May;52(5):407-12. doi: 10.1038/sc.2014.21. Epub 2014 Mar 11. — View Citation
Burke D, Fullen BM, Lennon O. Pain profiles in a community dwelling population following spinal cord injury: a national survey. J Spinal Cord Med. 2019 Mar;42(2):201-211. doi: 10.1080/10790268.2017.1351051. Epub 2017 Jul 24. — View Citation
Burke D, Fullen BM, Stokes D, Lennon O. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur J Pain. 2017 Jan;21(1):29-44. doi: 10.1002/ejp.905. Epub 2016 Jun 24. — View Citation
Burke D, Lennon O, Fullen BM. Quality of life after spinal cord injury: The impact of pain. Eur J Pain. 2018 Oct;22(9):1662-1672. doi: 10.1002/ejp.1248. Epub 2018 Jun 25. — View Citation
Cardenas DD, Jensen MP. Treatments for chronic pain in persons with spinal cord injury: A survey study. J Spinal Cord Med. 2006;29(2):109-17. doi: 10.1080/10790268.2006.11753864. — View Citation
Dugan EA, Sagen J. An Intensive Locomotor Training Paradigm Improves Neuropathic Pain following Spinal Cord Compression Injury in Rats. J Neurotrauma. 2015 May 1;32(9):622-32. doi: 10.1089/neu.2014.3692. Epub 2015 Mar 6. — View Citation
Dugan EA, Schachner B, Jergova S, Sagen J. Intensive Locomotor Training Provides Sustained Alleviation of Chronic Spinal Cord Injury-Associated Neuropathic Pain: A Two-Year Pre-Clinical Study. J Neurotrauma. 2021 Mar 15;38(6):789-802. doi: 10.1089/neu.2020.7378. Epub 2021 Jan 21. — View Citation
Eick J, Richardson EJ. Cortical activation during visual illusory walking in persons with spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2015 Apr;96(4):750-3. doi: 10.1016/j.apmr.2014.10.020. Epub 2014 Nov 15. — View Citation
Finnerup NB, Grydehoj J, Bing J, Johannesen IL, Biering-Sorensen F, Sindrup SH, Jensen TS. Levetiracetam in spinal cord injury pain: a randomized controlled trial. Spinal Cord. 2009 Dec;47(12):861-7. doi: 10.1038/sc.2009.55. Epub 2009 Jun 9. — View Citation
Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sorensen JC, Jensen TS, Werhagen L. Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain. 2014 Jan;15(1):40-8. doi: 10.1016/j.jpain.2013.09.008. Epub 2013 Oct 1. — View Citation
Flor H. Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother. 2008 May;8(5):809-18. doi: 10.1586/14737175.8.5.809. — View Citation
Foell J, Andoh J, Bekrater-Bodmann R, Diers M, Fuchs X, Colloca L, Flor H. Peripheral origin of phantom limb pain: is it all resolved? Pain. 2014 Oct;155(10):2205-2206. doi: 10.1016/j.pain.2014.08.028. Epub 2014 Aug 29. No abstract available. — View Citation
Gustin SM, Bolding M, Willoughby W, Anam M, Shum C, Rumble D, Mark VW, Mitchell L, Cowan RE, Richardson E, Richards S, Trost Z. Cortical Mechanisms Underlying Immersive Interactive Virtual Walking Treatment for Amelioration of Neuropathic Pain after Spinal Cord Injury: Findings from a Preliminary Investigation of Thalamic Inhibitory Function. J Clin Med. 2023 Sep 4;12(17):5743. doi: 10.3390/jcm12175743. — View Citation
Guy SD, Mehta S, Casalino A, Cote I, Kras-Dupuis A, Moulin DE, Parrent AG, Potter P, Short C, Teasell R, Bradbury CL, Bryce TN, Craven BC, Finnerup NB, Harvey D, Hitzig SL, Lau B, Middleton JW, O'Connell C, Orenczuk S, Siddall PJ, Townson A, Truchon C, Widerstrom-Noga E, Wolfe D, Loh E. The CanPain SCI Clinical Practice Guidelines for Rehabilitation Management of Neuropathic Pain after Spinal Cord: Recommendations for treatment. Spinal Cord. 2016 Aug;54 Suppl 1:S14-23. doi: 10.1038/sc.2016.90. — View Citation
Hearn JH, Cotter I, Fine P, A Finlay K. Living with chronic neuropathic pain after spinal cord injury: an interpretative phenomenological analysis of community experience. Disabil Rehabil. 2015;37(23):2203-11. doi: 10.3109/09638288.2014.1002579. Epub 2015 Jan 20. — View Citation
Hutchinson KJ, Gomez-Pinilla F, Crowe MJ, Ying Z, Basso DM. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain. 2004 Jun;127(Pt 6):1403-14. doi: 10.1093/brain/awh160. Epub 2004 Apr 6. — View Citation
IBM Corp. Released 2023. IBM SPSS Statistics for Windows, Version 29.0.2.0 Armonk, NY: IBM Corp
Jensen MP, Dworkin RH, Gammaitoni AR, Olaleye DO, Oleka N, Galer BS. Assessment of pain quality in chronic neuropathic and nociceptive pain clinical trials with the Neuropathic Pain Scale. J Pain. 2005 Feb;6(2):98-106. doi: 10.1016/j.jpain.2004.11.002. Erratum In: J Pain. 2005 Sep;6(9):637. — View Citation
Jensen MP, Sherlin LH, Gertz KJ, Braden AL, Kupper AE, Gianas A, Howe JD, Hakimian S. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal Cord. 2013 Jan;51(1):55-8. doi: 10.1038/sc.2012.84. Epub 2012 Jul 17. — View Citation
Kennedy P, Lude P, Taylor N. Quality of life, social participation, appraisals and coping post spinal cord injury: a review of four community samples. Spinal Cord. 2006 Feb;44(2):95-105. doi: 10.1038/sj.sc.3101787. — View Citation
Lofgren M, Norrbrink C. "But I know what works"--patients' experience of spinal cord injury neuropathic pain management. Disabil Rehabil. 2012;34(25):2139-47. doi: 10.3109/09638288.2012.676146. Epub 2012 Apr 18. — View Citation
Loh E, Mirkowski M, Agudelo AR, Allison DJ, Benton B, Bryce TN, Guilcher S, Jeji T, Kras-Dupuis A, Kreutzwiser D, Lanizi O, Lee-Tai-Fuy G, Middleton JW, Moulin DE, O'Connell C, Orenczuk S, Potter P, Short C, Teasell R, Townson A, Widerstrom-Noga E, Wolfe DL, Xia N, Mehta S. The CanPain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord injury: 2021 update. Spinal Cord. 2022 Jun;60(6):548-566. doi: 10.1038/s41393-021-00744-z. Epub 2022 Feb 5. — View Citation
Mann R, Schaefer C, Sadosky A, Bergstrom F, Baik R, Parsons B, Nalamachu S, Stacey BR, Tuchman M, Anschel A, Nieshoff EC. Burden of spinal cord injury-related neuropathic pain in the United States: retrospective chart review and cross-sectional survey. Spinal Cord. 2013 Jul;51(7):564-70. doi: 10.1038/sc.2013.34. Epub 2013 Apr 16. — View Citation
Moseley LG. Using visual illusion to reduce at-level neuropathic pain in paraplegia. Pain. 2007 Aug;130(3):294-298. doi: 10.1016/j.pain.2007.01.007. Epub 2007 Mar 1. — View Citation
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage. 2022 Sep;258:119351. doi: 10.1016/j.neuroimage.2022.119351. Epub 2022 Jun 2. — View Citation
Nees TA, Finnerup NB, Blesch A, Weidner N. Neuropathic pain after spinal cord injury: the impact of sensorimotor activity. Pain. 2017 Mar;158(3):371-376. doi: 10.1097/j.pain.0000000000000783. No abstract available. — View Citation
Sarnthein J, Jeanmonod D. High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage. 2008 Feb 15;39(4):1910-7. doi: 10.1016/j.neuroimage.2007.10.019. Epub 2007 Oct 25. — View Citation
Siddall PJ, Cousins MJ, Otte A, Griesing T, Chambers R, Murphy TK. Pregabalin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial. Neurology. 2006 Nov 28;67(10):1792-800. doi: 10.1212/01.wnl.0000244422.45278.ff. — View Citation
Siddall PJ. Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord. 2009 May;47(5):352-9. doi: 10.1038/sc.2008.136. Epub 2008 Nov 11. — View Citation
Trost Z, Anam M, Seward J, Shum C, Rumble D, Sturgeon J, Mark V, Chen Y, Mitchell L, Cowan R, Perera R, Richardson E, Richards S, Gustin S. Immersive interactive virtual walking reduces neuropathic pain in spinal cord injury: findings from a preliminary investigation of feasibility and clinical efficacy. Pain. 2022 Feb 1;163(2):350-361. doi: 10.1097/j.pain.0000000000002348. — View Citation
Vuckovic A, Gallardo VJF, Jarjees M, Fraser M, Purcell M. Prediction of central neuropathic pain in spinal cord injury based on EEG classifier. Clin Neurophysiol. 2018 Aug;129(8):1605-1617. doi: 10.1016/j.clinph.2018.04.750. Epub 2018 May 23. — View Citation
Vuckovic A, Hasan MA, Fraser M, Conway BA, Nasseroleslami B, Allan DB. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J Pain. 2014 Jun;15(6):645-55. doi: 10.1016/j.jpain.2014.02.005. Epub 2014 Mar 1. — View Citation
Vuckovic A, Jajrees M, Purcell M, Berry H, Fraser M. Electroencephalographic Predictors of Neuropathic Pain in Subacute Spinal Cord Injury. J Pain. 2018 Nov;19(11):1256.e1-1256.e17. doi: 10.1016/j.jpain.2018.04.011. Epub 2018 May 8. — View Citation
Widerstrom-Noga E, Anderson KD, Perez S, Martinez-Arizala A, Calle-Coule L, Fleming L. Barriers and Facilitators to Optimal Neuropathic Pain Management: SCI Consumer, Significant Other, and Health Care Provider Perspectives. Pain Med. 2020 Nov 1;21(11):2913-2924. doi: 10.1093/pm/pnaa058. — View Citation
Widerstrom-Noga E, Felix ER, Adcock JP, Escalona M, Tibbett J. Multidimensional Neuropathic Pain Phenotypes after Spinal Cord Injury. J Neurotrauma. 2016 Mar 1;33(5):482-92. doi: 10.1089/neu.2015.4040. Epub 2015 Dec 2. — View Citation
Widerstrom-Noga EG, Felipe-Cuervo E, Yezierski RP. Relationships among clinical characteristics of chronic pain after spinal cord injury. Arch Phys Med Rehabil. 2001 Sep;82(9):1191-7. doi: 10.1053/apmr.2001.25077. — View Citation
Wrigley PJ, Press SR, Gustin SM, Macefield VG, Gandevia SC, Cousins MJ, Middleton JW, Henderson LA, Siddall PJ. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain. 2009 Jan;141(1-2):52-9. doi: 10.1016/j.pain.2008.10.007. Epub 2008 Nov 21. — View Citation
* Note: There are 42 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | International Spinal Cord Injury Pain Basic Data Set Version 3.0 (ISCIPBDS 3.0) (Pain intensity) | This outcome measure will be used to capture average neuropathic pain intensity in participants | This will be measured at baseline, week 13 and at 6-month follow-up. | |
Primary | International Spinal Cord Injury Pain Basic Data Set Version 3.0 (ISCIPBDS 3.0) (Pain interference) | This outcome measure will be used to capture average neuropathic pain interference in participants. Pain interference entails interference with sleep, daily activities and overall mood. | This will be measured at baseline, week 13 and at 6-month follow-up. | |
Secondary | Neuropathic Pain Symptom Inventory (NPSI) | This questionnaire is used to capture the severity of neuropathic pain symptoms. | This will be measured at baseline, week 13 and at 6-month follow-up. | |
Secondary | Electroencephelography (EEG) | Resting EEG signals (3 minutes eyes open, 3 minutes eyes closed) for alpha, beta and theta band powers will be assessed using the NeuroCONCISE 8. | This will be measured at baseline, week 13 and at 6-month follow-up. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05869968 -
SCIVAX: Biomarkers of Immune Dysfunction and Vaccine Responsiveness in Chronic SCI
|
||
Active, not recruiting |
NCT00913471 -
Biomarkers for Pain in Spinal Cord Injury (SCI) Patients
|
||
Completed |
NCT04712188 -
Shoulder Kinematics and Acute Ultrasonographic Changes in Manual Wheelchair Users With Spinal Cord Injury
|
||
Recruiting |
NCT06000592 -
Safety, Feasibility, and Efficacy of TSCS on Stabilizing Blood Pressure for Acute Inpatients With SCI
|
N/A | |
Recruiting |
NCT03109782 -
The Austrian Spinal Cord Injury Study
|
||
Not yet recruiting |
NCT06247904 -
NIBS Therapy in Subacute Spinal Cord Injury
|
N/A |