Clinical Trials Logo

Clinical Trial Summary

Traumatic brain injury (TBI) is a common condition with high degree of morbidity and mortality (Hyder et al., 2007). Current treatment paradigms for TBI focus on mitigating secondary injury and maintaining cerebral physiology (Carney et al., 2016), however, there are currently no approved drugs that target the underlying conditions for patients suffering from TBI (Bullock et al., 1999). It is increasingly recognised that the innate inflammatory response to TBI may inflict injury (Lucas et al., 2006), and one of the most prominent mediators of inflammation in the injured brain is the Interleukin-1 (IL-1) receptor pathway (Allan et al., 2005). An endogenous antagonist to IL-1, is available in recombinant form (IL-1ra, Kineret), and is known to be safe in TBI (Helmy et al., 2014).

In order to fully understand, and potentially optimize, the effect of Kineret, the investigators wish to conduct a dose-response study by giving three cohorts (n=20 per group) either placebo (isotonic saline), 1.5g or 3.0g of active substance administered intravenously in a double-blind, randomized setting. The concentrations have in previous studies not been shown to present any side-effects (Singh et al., 2014). The drug will be provided within 12 hours after trauma. The goal will be to provide a dose-response effect on the cerebral inflammatory response. As secondary goals, the investigators will assess the brain damage by measuring proteins in blood and cerebrospinal fluid, functional outcome and inflammation in the brain using positron emission tomography.


Clinical Trial Description

Aim

The hypothesis is that an increasing dose of the anti-inflammatory drug recombinant human Interleukin-1 receptor antagonist (IL-1ra, Kineret) will modulate the inflammatory state of the traumatically injured brain, which will attenuate the injurious processes that occur following TBI.

Study Design

While different doses of Anakinra have been used in trials, there is no knowledge of what constitutes an optimized concentration of the drug. To address this limitation, the current study will be a dose-response study in a double blind randomised clinical fashion, using placebo (n=20), 1.5 g ("intermediate dose") or (n=20) and 3.0 g ("high dose")(n=20) of Anakinra provided the first 48 hours (drug/placebo administered initially as 500 mg infusion bolus and later as an 1g or 2.5g infusion for 48 hours). Thus, a total of n=60 patients will be included. Sample-size analyses have indicated that the number of patients is sufficient to detect differences in the inflammatory response as gauged with cytokine measurements using cerebral microdialysis.

As surrogate markers of outcome for these patients, several protein biomarkers of brain injury and proteins of the innate immune responses will be quantified using techniques called ELISA and multiplex assay technology. The investigators also wish to use radiological techniques, such as magnetic resonance imaging to study damages in white matter tracts in the brain and positron emission tomography to assess the degree of microglial activation. All these methods will be used to assess the potential benefit of the treatment vs placebo.

By this type of study design, it will minimize bias and confounders that may influence the study.

Patient Recruitment

Patients with a clinical diagnosis of severe and moderate TBI will be identified by the research team at the daily departmental neuro-critical care unit meeting. Patients meeting the inclusion criteria will be approached for consent/assent if conscious or if next of kin is present. If not, consent will be assumed as we know Anakinra to be safe and there is likely to be a narrow therapeutic window. With the current patient load at Addenbrooke's Hospital, Cambridge, the investigators deem it possible to recruit one patient per week, thus estimating that the recruiting phase will take approximately two years to complete.

Sampling

All the sampling will be conducted during the acute phase when the patient is unconscious in the neuro-critical care unit. Microdialysis probes are sampled hourly. To assess inflammatory activity in the brain, positron emission tomography will be performed within the first week and after 2-3 weeks. Magnetic resonance imaging will be performed the first 2-3 weeks and then after 6 months. To measure the patient's adaptive immune response to brain specific proteins, specialised auto-immunisation assays will be performed on patient blood at day 1-3 following injury as well as after 2-3 weeks.

During the intensive care phase, blood and cerebrospinal fluid will be sampled twice per day (approximately 3mL per sampling time per compartment, volumes that we do not deem harmful to the patient) and will be collected together with hourly microdialysate fluid samples the first 7 days from admission. Blood will also be sampled at an outpatient clinic follow up at 6 and 12 months following injury. Patient samples will be anonymised and stored at -80degC in the Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge before analysis.

It will not to be possible to measure cytokines, the drug and biomarkers from all microdialysis samples due to volume constraints. Moreover, we believe that a temporal resolution of 6 hours is probably adequate for the brain concentration of the drug while 12 hours is sufficient in serum. APP and tau will also be measured every 6 hours. The only parameter that will be hourly analysed in microdialysis is cytokine and chemokines through a luminex panel.

Clinical Follow-up

Patients will be followed up at a clinic visit at 6 and 12 months after trauma by questionnaire survey using standardised outcome measures in neurosurgical patients including the golden standard extended Glasgow Outcome Score and Short Form 36. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02997371
Study type Interventional
Source University of Cambridge
Contact Adel Helmy, MA, MB BChir, FRCS, PhD
Phone 00441223 216147
Email adelhelmy@cantab.net
Status Not yet recruiting
Phase Phase 2
Start date October 2017
Completion date October 2021

See also
  Status Clinical Trial Phase
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Completed NCT04356963 - Adjunct VR Pain Management in Acute Brain Injury N/A
Completed NCT03418129 - Neuromodulatory Treatments for Pain Management in TBI N/A
Terminated NCT03698747 - Myelin Imaging in Concussed High School Football Players
Recruiting NCT05130658 - Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training N/A
Recruiting NCT04560946 - Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI N/A
Completed NCT05160194 - Gaining Real-Life Skills Over the Web N/A
Recruiting NCT02059941 - Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04465019 - Exoskeleton Rehabilitation on TBI
Recruiting NCT04530955 - Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS) N/A
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Suspended NCT04244058 - Changes in Glutamatergic Neurotransmission of Severe TBI Patients Early Phase 1
Completed NCT03307070 - Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury N/A
Recruiting NCT04274777 - The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
Withdrawn NCT04199130 - Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI N/A
Withdrawn NCT05062148 - Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery N/A
Withdrawn NCT03626727 - Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia Early Phase 1