Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to examine the combined effects of hypoxia and a short bout of subconcussive head impacts on neurocognitive and ocular-motor function and plasma expression of brain-derived blood biomarkers.


Clinical Trial Description

The purpose of the pilot study is to observe preliminary trends in neural response to subconcussive head impacts in hypoxic condition. This work will provide a critical un-tested knowledge regarding the combined effects of subconcussion and hypoxic condition (mimicking high altitude), which will be used in our upcoming grant proposal to the Department of Defense (DoD). Military personnel, particularly those who are deployed to Afghanistan, are constantly subjected to hypoxic condition, given that the majority of military land operations in Afghanistan occur at 2000-3000 meters (6500-10,000 feet). This level of altitude does not elicit major side effects, yet neural functions may experience some degree of perturbation (i.e., slowed reaction time, altered night vision). Concurrently, these military personnel, who operate at high altitudes, often incur subconcussive forces to the head. These subconcussive head impacts can be induced by exposure to, for example, flash-bang grenades, artillery fire, recoilless rifle, improvised explosive devices (IEDs), and head collision. The combined effects of these two stressors have the potential to attenuate one's readiness, operational efficiency, and overall brain function, but the combined effects have never been studied to date. As a result, one of four study topics that the Defense Centers of Excellence deems urgent is: Document the effects of altitude exposure on mild traumatic brain injury (mTBI) and blast-induced neurotrauma (BINT). To answer the question, we hypothesized that there will be an exponential worsening in neurocognitive function and in ocular-motor system functioning, and increased plasma expression of brain-derived biomarkers, after subconcussive head impacts under hypoxic conditions. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04624152
Study type Interventional
Source Indiana University
Contact
Status Completed
Phase N/A
Start date October 22, 2018
Completion date May 1, 2019

See also
  Status Clinical Trial Phase
Completed NCT04527289 - Impact of Amantadine on Traumatic Brain Injury Phase 4
Active, not recruiting NCT04176640 - Quantifying Brain Injury on Computed Tomography in Hospitalized Children
Completed NCT05195996 - Beta Blocker Effects in Traumatic Brain Injury Phase 4
Completed NCT03648476 - Intervention to Change Attributions That Are Negative (ICAN) N/A
Not yet recruiting NCT05129514 - Imaging Lymphatic/Cerebrospinal Fluid (CSF) Drainage From the Head and Neck in Persons With Traumatic Brain Injury: Demonstration of Feasibility and Evaluation of Manual Therapy to Improve Drainage and Facilitate Cognitive Recovery N/A
Completed NCT04397952 - Endotracheal Tube Cuff Pressure Measurement
Not yet recruiting NCT06057155 - Intracranial Pressure and Optic Nerve Sheath Diameter With CLOSED Bundle
Not yet recruiting NCT05818371 - Non-invasive ONSD-based Neuromonitoring in a Neurointensive Care Setting N/A
Not yet recruiting NCT03839381 - Turkish Version of Mini-BESTest, Validity and Reliability for Adult Participants With Sensoriomotor Impairments
Recruiting NCT06027411 - Assess the Clinical Effectiveness in AI Prioritising CT Heads
Recruiting NCT05151978 - Transcranial Doppler in Mild and Moderate Traumatic Brain Injury (TBI)
Recruiting NCT04051528 - Do Combinatorial Training Lead to Better Cognition and Daily Participation in TBI Persons With Cognitive Impairments N/A
Recruiting NCT06028906 - Research of Optimal Cerebral Perfusion Pressure Diagnosis
Recruiting NCT06083441 - SeeMe: An Automated Tool to Detect Early Recovery After Brain Injury
Recruiting NCT03344432 - Correlation Intraocular Pressure With Intracranial Pressure N/A
Recruiting NCT04926987 - The Research of Human Cortex Cell Atlas
Recruiting NCT05726201 - (POCUS) As an Early Screening Tool for Diagnosing Skull Fractures in Children
Active, not recruiting NCT04564495 - Home Based Tele-exercise for People With Chronic Neurological Impairments N/A
Active, not recruiting NCT04058379 - Artificial Intelligence Analysis of Initial Scan Evolution of Traumatic Brain Injured Patient to Predict Neurological Outcome N/A
Recruiting NCT03325946 - The FBRI VTC Neuromotor Research Clinic