View clinical trials related to Transformed Non-Hodgkin Lymphoma.
Filter by:This phase 2 trial studies the side effects and best dose of tazemetostat and zanubrutinib in combination with tafasitamab and lenalidomide, and to see how well these combinations work in treating patients with large B-cell lymphoma that returned or did not respond to earlier treatment. Tazemetostat is in a class of medications called EZH2 inhibitors. It helps to stop the spread of cancer cells. Zanubrutinib is in a class of medications called kinase inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop the spread of cancer cells. tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The addition of tazemetostat or zanubrutinib to tafasitamab and lenalidomide may be able to shrink the cancer or extend the time without cancer symptoms coming back.
This study is testing the safety and tolerability of BGB-21447 monotherapy in participants with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). The study aims to determine the maximum tolerated dose (MTD), maximum adminstered dose (MAD), recommended Phase 2 dose (RP2D), and pharmacokinetic profile of the drug. Additionally, preliminary antitumor activity will be characterized. The study is divided into 2 main parts: Part 1 "Monotherapy Dose Finding" and Part 2 "Monotherapy Dose Expansion."
This phase I trial studies the safety and side effects of cytomegalovirus (CMV) specific CD19-chimeric antigen receptor (CAR) T-cells along with the CMV-modified vaccinia Ankara (MVA) triplex vaccine following a stem cell transplant in treating patients with high grade B-cell non-Hodgkin lymphoma. CAR T-cells are a type of treatment in which a patient's T-cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T-cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T-cells are grown in the laboratory and given to the patient by infusion. Vaccines such as CMV-MVA triplex are made from gene-modified viruses and may help the body build an effective immune response to kill cancer cells. Giving CMV-specific CD19-CAR T-cells plus the CMV-MVA triplex vaccine following a stem cell transplant may help prevent the cancer from coming back.
Patients will receive one of two conditioning regimens (BEAM or CBV) before receiving an autologous stem cell transplant (ASCT). If patients achieve either complete, partial, or stable response following ASCT, they will receive an IV dose of Polatuzumab Vedotin once every 21 days until they receive 8 doses. After Polatuzumab Vedotin therapy is completed, patients will be followed every 4 months for about 2 years.