Tourette Syndrome Clinical Trial
Official title:
Combined PET and MR Investigations of the Pathophysiology of Gilles de la Tourette Syndrome. Part 1: Simultaneous PET and 3T MRI
NCT number | NCT05232955 |
Other study ID # | PETMR_GTS_1-PETMR |
Secondary ID | |
Status | Completed |
Phase | |
First received | |
Last updated | |
Start date | May 4, 2022 |
Est. completion date | July 4, 2023 |
Verified date | March 2024 |
Source | Max Planck Institute for Human Cognitive and Brain Sciences |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
Gilles de la Tourette syndrome (GTS; also known as Tourette syndrome) is a congenital neuropsychiatric disorder. Characteristic symptoms are so-called tics-rapid, repetitive movements (motor tics) or vocalizations (vocal tics) that start suddenly without any apparent purpose. Previous research supports the hypothesis of defective regulation (dysregulation) of the dopaminergic system, with particular discussion of dysfunction of tonic/phasic dopamine release or dopaminergic hyperinnervation. Moreover, given the complex interaction of different neurotransmitters, especially in the basal ganglia, it can be assumed that abnormal dopaminergic transmission also affects other transmitter systems, such as glutamate (Glu) or γ-aminobutyrate (GABA). Furthermore, recent results suggest an abnormality in cerebral iron metabolism in GTS. Since iron is accumulated in dopamine vesicles and plays a central role in dopamine synthesis, this observation may also be related to dysfunction of the dopaminergic system. Therefore, in this multimodal study, the investigators aim to combine positron emission tomography (PET), magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS) methods comparing patients with GTS and a control cohort. In Part 1 of this study, MRI and MRS at 3 Tesla are employed to investigate (i) the binding potential of D1 dopamine receptors, (ii) the concentrations of Glu, glutamine and GABA in the corpus striatum and the cortex cingularis anterior and (iii) the subcortical iron concentration.
Status | Completed |
Enrollment | 40 |
Est. completion date | July 4, 2023 |
Est. primary completion date | April 6, 2023 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 50 Years |
Eligibility | GTS Group: Inclusion Criteria: - GTS according to DSM-IV-TR criteria - mild or moderate tics - drug-free for a minimum of 4 weeks prior to the exam Exclusion Criteria: - severe tics of the head and/or face - psychiatric medication within 4 weeks prior to the exam - consumption of alcohol during 24 hours prior to the exam - consumption of cannabis during 24 hours prior to the exam • pregnancy - general contra-indications for MRI exams Control Group: Inclusion Criteria: • no known neurological or psychiatric disease Exclusion criteria: - psychiatric medication within 4 weeks prior to the exam - consumption of alcohol during 24 hours prior to the exam - consumption of cannabis during 24 hours prior to the exam • pregnancy - general contra-indications for MRI exams |
Country | Name | City | State |
---|---|---|---|
Germany | Max Planck Institute for Human Cognitive and Brain Sciences | Leipzig |
Lead Sponsor | Collaborator |
---|---|
Max Planck Institute for Human Cognitive and Brain Sciences | Hannover Medical School, Leipzig University Medical Center |
Germany,
Albin RL, Mink JW. Recent advances in Tourette syndrome research. Trends Neurosci. 2006 Mar;29(3):175-82. doi: 10.1016/j.tins.2006.01.001. Epub 2006 Jan 23. — View Citation
Bourne JA. SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001 Winter;7(4):399-414. doi: 10.1111/j.1527-3458.2001.tb00207.x. — View Citation
Draper A, Stephenson MC, Jackson GM, Pepes S, Morgan PS, Morris PG, Jackson SR. Increased GABA contributes to enhanced control over motor excitability in Tourette syndrome. Curr Biol. 2014 Oct 6;24(19):2343-7. doi: 10.1016/j.cub.2014.08.038. Epub 2014 Sep 25. — View Citation
Forde NJ, Kanaan AS, Widomska J, Padmanabhuni SS, Nespoli E, Alexander J, Rodriguez Arranz JI, Fan S, Houssari R, Nawaz MS, Rizzo F, Pagliaroli L, Zilhao NR, Aranyi T, Barta C, Boeckers TM, Boomsma DI, Buisman WR, Buitelaar JK, Cath D, Dietrich A, Driessen N, Drineas P, Dunlap M, Gerasch S, Glennon J, Hengerer B, van den Heuvel OA, Jespersgaard C, Moller HE, Muller-Vahl KR, Openneer TJ, Poelmans G, Pouwels PJ, Scharf JM, Stefansson H, Tumer Z, Veltman DJ, van der Werf YD, Hoekstra PJ, Ludolph A, Paschou P. TS-EUROTRAIN: A European-Wide Investigation and Training Network on the Etiology and Pathophysiology of Gilles de la Tourette Syndrome. Front Neurosci. 2016 Aug 23;10:384. doi: 10.3389/fnins.2016.00384. eCollection 2016. — View Citation
Gilbert DL, Murphy TK, Jankovic J, Budman CL, Black KJ, Kurlan RM, Coffman KA, McCracken JT, Juncos J, Grant JE, Chipkin RE. Ecopipam, a D1 receptor antagonist, for treatment of tourette syndrome in children: A randomized, placebo-controlled crossover study. Mov Disord. 2018 Aug;33(8):1272-1280. doi: 10.1002/mds.27457. Epub 2018 Sep 7. — View Citation
Kaller S, Rullmann M, Patt M, Becker GA, Luthardt J, Girbardt J, Meyer PM, Werner P, Barthel H, Bresch A, Fritz TH, Hesse S, Sabri O. Test-retest measurements of dopamine D1-type receptors using simultaneous PET/MRI imaging. Eur J Nucl Med Mol Imaging. 2017 Jun;44(6):1025-1032. doi: 10.1007/s00259-017-3645-0. Epub 2017 Feb 14. — View Citation
Kanaan AS, Gerasch S, Garcia-Garcia I, Lampe L, Pampel A, Anwander A, Near J, Moller HE, Muller-Vahl K. Pathological glutamatergic neurotransmission in Gilles de la Tourette syndrome. Brain. 2017 Jan;140(1):218-234. doi: 10.1093/brain/aww285. Epub 2016 Dec 22. — View Citation
Kwak C, Dat Vuong K, Jankovic J. Premonitory sensory phenomenon in Tourette's syndrome. Mov Disord. 2003 Dec;18(12):1530-3. doi: 10.1002/mds.10618. — View Citation
Larsen B, Olafsson V, Calabro F, Laymon C, Tervo-Clemmens B, Campbell E, Minhas D, Montez D, Price J, Luna B. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat Commun. 2020 Feb 12;11(1):846. doi: 10.1038/s41467-020-14693-3. — View Citation
Leckman JF. Tourette's syndrome. Lancet. 2002 Nov 16;360(9345):1577-86. doi: 10.1016/S0140-6736(02)11526-1. — View Citation
Lerner A, Bagic A, Simmons JM, Mari Z, Bonne O, Xu B, Kazuba D, Herscovitch P, Carson RE, Murphy DL, Drevets WC, Hallett M. Widespread abnormality of the gamma-aminobutyric acid-ergic system in Tourette syndrome. Brain. 2012 Jun;135(Pt 6):1926-36. doi: 10.1093/brain/aws104. Epub 2012 May 10. — View Citation
Maia TV, Conceicao VA. Dopaminergic Disturbances in Tourette Syndrome: An Integrative Account. Biol Psychiatry. 2018 Sep 1;84(5):332-344. doi: 10.1016/j.biopsych.2018.02.1172. Epub 2018 Mar 9. — View Citation
Mink JW. Basal ganglia dysfunction in Tourette's syndrome: a new hypothesis. Pediatr Neurol. 2001 Sep;25(3):190-8. doi: 10.1016/s0887-8994(01)00262-4. — View Citation
Moller HE, Bossoni L, Connor JR, Crichton RR, Does MD, Ward RJ, Zecca L, Zucca FA, Ronen I. Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology. Trends Neurosci. 2019 Jun;42(6):384-401. doi: 10.1016/j.tins.2019.03.009. Epub 2019 Apr 29. — View Citation
Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature. 1997 Feb 13;385(6617):634-6. doi: 10.1038/385634a0. — View Citation
Singer HS, Morris C, Grados M. Glutamatergic modulatory therapy for Tourette syndrome. Med Hypotheses. 2010 May;74(5):862-7. doi: 10.1016/j.mehy.2009.11.028. Epub 2009 Dec 21. — View Citation
Singer HS. Treatment of tics and tourette syndrome. Curr Treat Options Neurol. 2010 Nov;12(6):539-61. doi: 10.1007/s11940-010-0095-4. — View Citation
Tinaz S, Belluscio BA, Malone P, van der Veen JW, Hallett M, Horovitz SG. Role of the sensorimotor cortex in Tourette syndrome using multimodal imaging. Hum Brain Mapp. 2014 Dec;35(12):5834-46. doi: 10.1002/hbm.22588. Epub 2014 Jul 15. — View Citation
Yoon DY, Gause CD, Leckman JF, Singer HS. Frontal dopaminergic abnormality in Tourette syndrome: a postmortem analysis. J Neurol Sci. 2007 Apr 15;255(1-2):50-6. doi: 10.1016/j.jns.2007.01.069. Epub 2007 Mar 6. — View Citation
* Note: There are 19 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | D1 receptor availability | GTS patients exhibit reduced tonic levels of dopamine and, in particular in frontal brain, abnormalities in D1 receptor availability | D1 receptor availability is measured at the time of the PET/MR exam | |
Primary | Subcortical magnetic susceptibility as brain iron proxy | Iron stores in subcortical structures are reduced in GTS patients | Susceptibility is measured at the time of the PET/MR exam | |
Primary | Concentration of glutamate (Glu) and glutamate plus glutamine (Glx) | Glu and Glx levels are reduced in GTS patients in striatum | Glu and Glx are measured at the time of the PET/MR exam | |
Primary | Concentration of glutamine (Gln) | Gln levels are reduced in GTS patients in striatum | Gln is measured at the time of the PET/MR exam | |
Primary | Concentration of ?-aminobutyrate (GABA) | GABA levels in GTS patients deviate from those in healthy controls in striatum and cingulate cortex | GABA is measured at the time of the PET/MR exam | |
Secondary | Plasma ferritin level | Blood ferritin is reduced in GTS patients | A plasma sample is taken at the time of the PET/MR exam |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04851678 -
Longitudinal Impact of Stressors in Adults With Tourette Syndrome
|
||
Completed |
NCT02605902 -
Trial to Demonstrate the Efficacy and Safety of Internet-delivered Behavioral Treatment for Adults With Tic Disorders
|
N/A | |
Completed |
NCT04007913 -
Incorporating teleCBIT Into a Hospital-Based Tic Program
|
N/A | |
Completed |
NCT02900144 -
Modified Comprehensive Behavioral Intervention for Tics (M_CBIT)
|
N/A | |
Completed |
NCT02256475 -
Safety, Pharmacokinetics, and Pharmacodynamics of NBI-98854 in Children and Adolescents With Tourette Syndrome
|
Phase 1 | |
Completed |
NCT02216474 -
Brain Stimulation in Movement Disorders
|
N/A | |
Completed |
NCT01329198 -
Brain Stimulation for the Treatment of Tourette Syndrome
|
N/A | |
Terminated |
NCT00952601 -
Pilot Study of the Modified Atkins Diet for Tourette Syndrome
|
Phase 1 | |
Enrolling by invitation |
NCT00355927 -
Sedation During Microelectrode Recordings Before Deep Brain Stimulation for Movement Disorders.
|
N/A | |
Completed |
NCT00206323 -
A Randomized, Placebo-controlled, Tourette Syndrome Study.
|
Phase 3 | |
Completed |
NCT00004376 -
Phase III Randomized, Double-Blind, Placebo-Controlled Study of Guanfacine for Tourette Syndrome and Attention Deficit Hyperactivity Disorder
|
Phase 3 | |
Completed |
NCT04498364 -
Extinction Learning in Adults With Tourette Syndrome
|
N/A | |
Completed |
NCT00755339 -
Role of the Sensory Experience in Generating Motor Tics in Tourette Syndrome
|
||
Completed |
NCT03325010 -
Safety, Tolerability, and Efficacy of NBI-98854 for the Treatment of Pediatric Subjects With Tourette Syndrome
|
Phase 2 | |
Not yet recruiting |
NCT06081348 -
Sertraline vs. Placebo in the Treatment of Anxiety in Children and AdoLescents With NeurodevelopMental Disorders
|
Phase 2 | |
Completed |
NCT01702077 -
Neurofeedback for Tourette Syndrome
|
N/A | |
Completed |
NCT01719523 -
Open-Trial of EPI-743 for Adults With Tourette Syndrome
|
Phase 1 | |
Completed |
NCT00231985 -
Effectiveness of Behavior Therapy and Psychosocial Therapy for the Treatment of Tourette Syndrome and Chronic Tic Disorder
|
Phase 2 | |
Completed |
NCT00206336 -
An Open-label Study to Determine the Efficacy and Safety of Topiramate in the Treatment of Tourette Syndrome.
|
Phase 3 | |
Terminated |
NCT03732534 -
Rollover Study for Continuing NBI-98854 Administration in Pediatric Subjects With Tourette Syndrome
|
Phase 2 |