View clinical trials related to Temperature Change, Body.
Filter by:It is unclear whether routine addition of intra-operative forced-air warming in addition to warmed intravenous fluids during cesarean delivery under spinal anesthesia is beneficial. In this single-center randomized trial, we aim to test the primary null hypothesis that our current protocol of warmed intravenous fluids is similar to a combination of warmed intravenous fluids with intra-operative lower-body forced-air warming to maintain maternal temperature after cesarean delivery under spinal anesthesia. We also aim to assess the rate of maternal shivering during and after the procedure between the two groups, the maternal thermal comfort score, neonatal Apgar scores and umbilical pH levels. If we demonstrate no clinically important difference between the two interventions, clinicians will be able to continue our current protocol of warmed intravenous fluids only during cesarean delivery.
Cryotherapy after surgery is widely utilised and has numerous practical applications for post-operative rehabili-tation. Previous research has suggested that during cold therapy, the skin temperature of the knee should be reduced to 10-15°C to maximise the therapeutic benefits of cooling while avoiding the risk of cold injuries such as nerve damage and frostbite (Wilke and Weiner, 2003; Bleakley, McDonough and MacAuley, 2004). The degree to which the pressure applied by a cuff to the knee has an effect on the achieved skin temperature of the treatment area is unknown. The aim of this study is to determine the effect that different pressure settings have on skin temperature around the knee during a 30-minute cryocompression treatment.
Cryotherapy after surgery is widely utilised and has numerous practical applications for post-operative rehabilitation. Previous research has suggested that during cold therapy, the skin temperature of the knee should be reduced to 10-15°C to maximise the therapeutic benefits of cooling while avoiding the risk of cold injuries such as nerve damage and frostbite (Wilke and Weiner, 2003; Bleakley, McDonough and MacAuley, 2004). However, a recent study noted that where cryocompression devices have previously been used to reduce the skin temperature <10°C, no complications relating to the device have been reported, suggesting that the risk to the user at these lower temperatures is minimal (Bellon et al., 2019). The temperature range at which a cryocompression device should be set in order to achieve a skin temperature within the therapeutic range of 10-15°C is unknown. Furthermore, there is evidence to suggest that the temperature setting of the device does not equal that to which the skin is reduced (Selfe et al., 2009). Therefore, it is not sufficient to assume that the temperature setting of a cryocompression device accurately reflects skin temperature. Modern cryotherapy devices often consist of some sort of cuff that can be wrapped around the knee, with a connecting tube to a central unit that supplies and circulates ice-water to and from the cuff in order to cool the intended body part. Such devices offer differing levels of control over the temperature of the ice-water as it leaves the central unit, but nothing is known about how this correlates to the skin temperatures that are achieved during a cryotherapy treatment. The aim of this study is to determine the ability of five different cryocompression.devices to effectively lower the skin temperature of the treatment area to within the therapeutic range.
The purpose of the project is to estimate the air temperature in the lungs after a change from room temperature (25℃) to an environment with a constant temperature of 88-92℃ in resp. lung-healthy persons and persons with bronchiectasis.
The THERMAL study is a pilot study to determine feasibility of using two separate continuous skin temperature monitors during intensive treatment for haematological malignancies. It involves participants wearing both the TempTraq and CORE temperature devices for up to 14 days, and then assessing their feasibility and tolerability with quantitative, semiquantitative and qualitative methods.
Cryotherapy after surgery is widely utilised and has numerous practical applications for post-operative rehabilitation. Previous research has suggested that during cold therapy, the skin temperature of the knee should be reduced to 10-15°C to maximise the therapeutic benefits of cooling while avoiding the risk of cold injuries such as nerve damage and frostbite (Wilke and Weiner, 2003; Bleakley, McDonough and MacAuley, 2004). The temperature range at which a device cryocompression device should be set in order to achieve a skin temperature within the therapeutic range of 10-15°C is unknown. Furthermore, there is evidence to suggest that the temperature of the device does not equal that to which the skin is reduced, plus different devices do not achieve the same reduction in skin temperature despite the ice-water within the knee sleeve being maintained at similar temperatures (Selfe et al., 2009). Therefore, it is not sufficient to assume that the temperature setting of a cryo-compression device reflects the skin temperature achieved. The aim of this study is to determine which temperature of ice-water flowing through a Physiolab S1 cryocompression device is able to reduce skin temperature around the knee to within the previously stated therapeutic range.
A prospective observational study aiming to monitor core temperature via an esophageal probe in out of hospital cardiac arrest during transport and until arrival in hospital. Insertion of an esophageal temperature probe will be done on scene during ongoing resuscitation manoeuvres based on European Resuscitation Council Guidelines 2015 (or newer). Environmental temperature influence and hypothermia prevention interventions will be monitored.
The primary objective of this study is to determine if the Infrared Cameras, Inc (ICI) FMX 400 infrared (IR) Class 1 infrared thermal camera (IRT) system is comparable to oral, forehead, and ear thermometers for determining human body temperature.
The purpose of the study is to compare the effectiveness of resistive blanket warming to forced air warming in maintaining body temperature in participants undergoing renal transplantation.
This study will look at the incidence of post-spinal shivering (PSS) among the obstetrics population and will investigate whether higher operation theater (OT) temperature range or/and IV Ondansetron are able to reduce the incidence of PSS. This is a double-blind, randomized, factorial study, patients will be grouped into 4 groups - LP, HP, LO, HO (L= low-temperature range, H= high-temperature range, P= placebo, O=Ondansetron). All patients undergoing cesarean section under spinal anesthesia will be recruited, and it will be conducted in obstetrics OT.