Clinical Trials Logo

Temperature Change, Body clinical trials

View clinical trials related to Temperature Change, Body.

Filter by:
  • Not yet recruiting  
  • Page 1

NCT ID: NCT06432270 Not yet recruiting - Clinical trials for Perioperative Complication

Effect of Diabetes Mellitus on Cardiac Autonomic Function in Surgical Patients Undergoing General Anesthesia

Start date: June 1, 2024
Phase:
Study type: Observational [Patient Registry]

Because autonomic neuropathy affects the constriction of thermoregulatory blood vessels, it is more difficult for diabetic patients to maintain their own body temperature in cold environments than normal people, and therefore it is more difficult for diabetic patients to maintain a relatively constant body temperature regardless of the temperature of the environment than normal people. So are diabetic patients under general anesthesia more susceptible to intraoperative hypothermia? How does heart rate variability change in diabetic patients under general anesthesia? If diabetic patients are more susceptible to intraoperative hypothermia under general anesthesia, is this related to their cardiac autonomic dysfunction?

NCT ID: NCT05789290 Not yet recruiting - Clinical trials for Temperature Change, Body

Skin Temperature Reduction With Hilotherm Device

Start date: April 2023
Phase:
Study type: Observational

Cryotherapy after surgery is widely utilised and has numerous practical applications for post-operative rehabilitation. Previous research has suggested that during cold therapy, the skin temperature of the knee should be reduced to 10-15°C to maximise the therapeutic benefits of cooling while avoiding the risk of cold injuries such as nerve damage and frostbite. The temperature to which a cryocompression device should be set in order to achieve a skin temperature within the therapeutic range of 10-15°C is unknown. Furthermore, there is evidence to suggest that the temperature setting of the device does not equal that to which the skin is reduced. Therefore, it is not sufficient to assume that the temperature setting of a cryocompression device accurately reflects the achieved skin temperature. Modern cryotherapy devices mostly consist of some sort of cuff that can be wrapped around the knee, with a connecting tube to a central unit that supplies and circulates cold water to and from the cuff in order to cool the intended body part. The Hilotherm is one such device for use in this way, but its ability to reduce skin temperature to within the target therapeutic range is unknown. The aim of this study is to determine whether the Hilotherm device is capable of reducing skin temperature of the knee to within the 10-15℃ therapeutic range during a standard 30-minute treatment.