View clinical trials related to T-cell Non-Hodgkin Lymphoma.
Filter by:This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
The purpose of this study is to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary antitumor activity of AZD4573 in subjects with relapsed or refractory haematological malignancies.
This pilot clinical trial compares the safety of two different platelet transfusion "thresholds" among patients with blood cancer or treatment-induced thrombocytopenia whose condition requires anticoagulant medication (blood thinners) for blood clots. Giving relatively fewer platelet transfusions may reduce the side effects of frequent platelet transfusions without leading to undue bleeding.
The purpose of this research study is to determine the highest and safest dose of the experimental drug veliparib when combined with nivolumab. We will also study how safely this combination of medication can be given in advanced cancer and lymphoma and benefits of receiving this therapy. Nivolumab is currently approved in certain cancers such as melanoma, lung cancer and kidney cancer. Veliparib is not yet approved for use in the United States, and is considered experimental. Veliparib inhibits (blocks) the activity of the enzyme PARP. This blocking activity may prevent the cancer cell from repairing itself and resume growing. Nivolumab increases T cells in your immune system, which allows your immune system to attack the cancer. We think the combination of these drugs will be more effective against your cancer.
Relapsed and refractory T-cell lymphomas have been reported to have dismal outcomes. The role of allogeneic stem cell transplantation have been demonstrated in these patients. This clinical trial is studying the efficacy and safety of busulfan plus fludarabine as conditioning therapy followed by allogeneic stem cell transplantation (Allo-SCT) in T- and NK/T-cell lymphoma patients who have relapsed or are refractory to previous chemotherapies including autologous transplantation.
This phase 2 trial studies how well cluster of differentiation 8 (CD8)+ memory T-cells work as a consolidative therapy following a donor non-myeloablative hematopoietic cell transplant in treating patients with leukemia or lymphoma. Giving total lymphoid irradiation and anti-thymocyte globulin before a donor hematopoietic cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells, such as CD8+ memory T-cells, may boost this effect and may be an effective treatment to kill any cancer cells that may be left in the body (consolidative therapy).
This pilot clinical trial studies the side effects of lenalidomide and ipilimumab after stem cell transplant in treating patients with hematologic or lymphoid malignancies. Biological therapies, such as lenalidomide, may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide with ipilimumab may be a better treatment for hematologic or lymphoid malignancies.
The purpose of this study is to test the benefit of a chemotherapy drug called romidepsin in patients with T Cell Non-Hodgkin Lymphoma (T NHL) who have undergone autologous transplantation.
The current standard of care for the frontline treatment of peripheral T-cell lymphomas (PTCL) is induction chemotherapy followed by autologous stem cell transplantation (ASCT). However, many patients are unable to get to ASCT or relapse after ASCT, with a poor prognosis. Recently, a novel ASCT conditioning regimen of gemcitabine, busulfan and melphalan (Gem/Bu/Mel) has been reported to lead to favorable outcomes in this disease. We therefore designed a frontline regimen of CHOEP induction followed by Gem/Bu/Mel ASCT, and report the results of a phase 2 study of this regimen in patients with PTCL.
This phase II trial studies the side effects and how well bortezomib and vorinostat work in treating patients with non-Hodgkin lymphoma (NHL) after patients' own stem cell (autologous) transplant. Bortezomib and vorinostat in the laboratory may stop the growth of lymphoma cells and make them more likely to die by blocking some of the enzymes needed for cell growth. Giving bortezomib together with vorinostat after an autologous stem cell transplant may thus kill lymphoma cells that remain after transplant.