View clinical trials related to T-cell Non-Hodgkin Lymphoma.
Filter by:It is essential to improve clinical efficiency and management of hematological and oncological patients treated on an outpatient basis. The most promising operative way to achieve this result is the development of tele-oncology platforms, that allow not only a telemedicine visit, but also the patient support in the daily management of the disease and related disorders, as well as treatments and their complications. In this perspective, the RITA communication platform should be able to support the patient, the caregiver, the physician and the general practitioner in the management of the disease and its treatments.
The purpose of this study is to evaluate the safety, pharmacokinetics, immunogenicity, and efficacy of zilovertamab vedotin given intravenously (IV) across a range of dose levels in participants with previously treated hematological cancers including acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), Burkitt lymphoma (BL), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), lymphoplasmacytoid lymphoma/Waldenström macroglobulinemia (LPL/WM), mantle cell lymphoma (MCL), marginal zone lymphoma (MZL), Richter transformation lymphoma (RTL), and T-cell non-Hodgkin lymphoma (NHL).
The purpose of this study is to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary antitumor activity of AZD4573 in subjects with relapsed or refractory haematological malignancies.
The purpose of this research study is to determine the highest and safest dose of the experimental drug veliparib when combined with nivolumab. We will also study how safely this combination of medication can be given in advanced cancer and lymphoma and benefits of receiving this therapy. Nivolumab is currently approved in certain cancers such as melanoma, lung cancer and kidney cancer. Veliparib is not yet approved for use in the United States, and is considered experimental. Veliparib inhibits (blocks) the activity of the enzyme PARP. This blocking activity may prevent the cancer cell from repairing itself and resume growing. Nivolumab increases T cells in your immune system, which allows your immune system to attack the cancer. We think the combination of these drugs will be more effective against your cancer.
This phase 2 trial studies how well cluster of differentiation 8 (CD8)+ memory T-cells work as a consolidative therapy following a donor non-myeloablative hematopoietic cell transplant in treating patients with leukemia or lymphoma. Giving total lymphoid irradiation and anti-thymocyte globulin before a donor hematopoietic cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells, such as CD8+ memory T-cells, may boost this effect and may be an effective treatment to kill any cancer cells that may be left in the body (consolidative therapy).
This pilot clinical trial studies the side effects of lenalidomide and ipilimumab after stem cell transplant in treating patients with hematologic or lymphoid malignancies. Biological therapies, such as lenalidomide, may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving lenalidomide with ipilimumab may be a better treatment for hematologic or lymphoid malignancies.
This phase II trial studies the side effects and how well bortezomib and vorinostat work in treating patients with non-Hodgkin lymphoma (NHL) after patients' own stem cell (autologous) transplant. Bortezomib and vorinostat in the laboratory may stop the growth of lymphoma cells and make them more likely to die by blocking some of the enzymes needed for cell growth. Giving bortezomib together with vorinostat after an autologous stem cell transplant may thus kill lymphoma cells that remain after transplant.
This phase I trial studies the best dose and how well bendamustine works with standard chemotherapy (fludarabine, rituximab) in treating participants with lymphoid cancers undergoing stem cell transplant. Drugs used in chemotherapy, such as fludarabine, bendamustine, and rituximab, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant helps stop the growth of cancer cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the participant, they may help the participant's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes, the transplanted cells from a donor can make an immune response against the body's normal cells called graft versus host disease. Giving rituximab and methotrexate after the transplant may stop this from happening.
This phase II trial is studying how well umbilical cord blood transplant from a donor works in treating patients with hematological cancer. Giving chemotherapy and total-body irradiation (TBI) before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening.
The purpose of this research study is to evaluate the overall response rate to imatinib mesylate in participants with relapsed or refractory T cell non-Hodgkin's lymphoma. This drug has been used in chronic myeloid leukemia and information from those other research studies suggests that it may help to treat T cell non-Hodgkin's lymphoma.