Surgery Clinical Trial
Official title:
Clinical Validation of the C-Arm Rotational View (CARV) to Avoid Rotational Malalignment After Intramedullary Nailing of Tibial Shaft Fractures.
Tibia shaft fractures are common long bone fractures in the field of Orthopaedic Trauma. In the USA, a total of 492.000 tibial fractures were reported per year by the National Center of Health Statistics (NCHS). Intramedullary nailing (IMN) is the treatment of choice for shaft fractures. However, rotational malalignment (RM) remains an iatrogenic pitfall with a prevalence up to 30%. From a clinical point of view, there is limited knowledge on how to avoid RM during IMN. Clinical estimation of tibial alignment is difficult, resulting frequently in RM following IMN. Low-dose CT-assessment is considered the gold standard to objectify RM, but is performed after surgery when the opportunity for direct revision has passed. Both difficulties in intraoperative clinical judgement of tibial alignment as well as postoperative detection of RM when the possibility for direct revision has passed, do support the need for an easy-to-use intraoperative fluoroscopy protocol to minimize the risk for RM during IMN of tibial shaft fractures. Recently, a standardized intraoperative fluoroscopy protocol named the 'C-Arm Rotational View (CARV)' was determined in order to improve the accuracy of alignment control during IMN of tibial shaft fractures. CARV includes predefined fluoroscopy landmarks of the uninjured side to correct for rotational malalignment of the injured side in which the rotation of the C-Arm Image Intensifier is used. Promising preliminary results were found to reduce the risk on RM following IMN of tibia fractures. However, a prospective trial is needed to determine the performance of CARV in clinical practice. Therefore, a prospective multi-center randomized controlled trial is designed to assess the clinical feasibility and potential benefits of the CARV-protocol. The following primary research question was defined: can the risk for RM following IMN of tibial shaft fractures be minimized by use of the CARV-protocol?
Status | Not yet recruiting |
Enrollment | 100 |
Est. completion date | December 2024 |
Est. primary completion date | September 2024 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - All consecutive patients (=18 years) with an open or closed tibia shaft fracture, who are eligible for IMN, will be asked to enroll in the study Exclusion Criteria: - The following exclusion criteria will be used: age <18 years, fractures not suitable for IMN and pathological fractures. |
Country | Name | City | State |
---|---|---|---|
Australia | Flinders Medical Centre, Flinders University | Adelaide | |
Netherlands | University Medical Centers Groningen | Groningen |
Lead Sponsor | Collaborator |
---|---|
University Medical Center Groningen |
Australia, Netherlands,
Bleeker NJ, Cain M, Rego M, Saarig A, Chan A, Sierevelt I, Doornberg JN, Jaarsma RL. Bilateral Low-Dose Computed Tomography Assessment for Post-Operative Rotational Malalignment After Intramedullary Nailing for Tibial Shaft Fractures: Reliability of a Practical Imaging Technique. Injury. 2018 Oct;49(10):1895-1900. doi: 10.1016/j.injury.2018.07.031. Epub 2018 Jul 29. — View Citation
Bleeker NJ, Reininga IHF, van de Wall BJM, Hendrickx LAM, Beeres FJP, Duis KT, Doornberg JN, Jaarsma RL, Kerkhoffs GMMJ, IJpma FFA. Difference in Pain, Complication Rates, and Clinical Outcomes After Suprapatellar Versus Infrapatellar Nailing for Tibia Fractures? A Systematic Review of 1447 Patients. J Orthop Trauma. 2021 Aug 1;35(8):391-400. doi: 10.1097/BOT.0000000000002043. — View Citation
Cain ME, Hendrickx LAM, Bleeker NJ, Lambers KTA, Doornberg JN, Jaarsma RL. Prevalence of Rotational Malalignment After Intramedullary Nailing of Tibial Shaft Fractures: Can We Reliably Use the Contralateral Uninjured Side as the Reference Standard? J Bone Joint Surg Am. 2020 Apr 1;102(7):582-591. doi: 10.2106/JBJS.19.00731. — View Citation
Puloski S, Romano C, Buckley R, Powell J. Rotational malalignment of the tibia following reamed intramedullary nail fixation. J Orthop Trauma. 2004 Aug;18(7):397-402. — View Citation
Shih YC, Chau MM, Arendt EA, Novacheck TF. Measuring Lower Extremity Rotational Alignment: A Review of Methods and Case Studies of Clinical Applications. J Bone Joint Surg Am. 2020 Feb 19;102(4):343-356. doi: 10.2106/JBJS.18.01115. Review. — View Citation
Theriault B, Turgeon AF, Pelet S. Functional impact of tibial malrotation following intramedullary nailing of tibial shaft fractures. J Bone Joint Surg Am. 2012 Nov 21;94(22):2033-9. doi: 10.2106/JBJS.K.00859. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Rotational (mal)alignment | Determine the incidence of RM using postoperative CT-assessment. In literature, RM is defined as a rotation =10 degrees relative to the contralateral side. However, considering the physiological left-right difference of 4 degrees between left and right-sided tibiae, with right-sided tibiae on average 4 degrees more externally rotated, RM is defined as malrotation of < -6 degrees or >14 degrees in right-sided tibiae and < -14 degrees or >6 degrees in left-sided tibiae. A negative angle represents internal rotation and positive angle external rotation. | Up to 12 months after initial surgery |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05583916 -
Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery
|
N/A | |
Completed |
NCT04448041 -
CRANE Feasibility Study: Nutritional Intervention for Patients Undergoing Cancer Surgery in Low- and Middle-Income Countries
|
||
Completed |
NCT03213314 -
HepaT1ca: Quantifying Liver Health in Surgical Candidates for Liver Malignancies
|
N/A | |
Enrolling by invitation |
NCT05534490 -
Surgery and Functionality in Older Adults
|
N/A | |
Recruiting |
NCT04792983 -
Cognition and the Immunology of Postoperative Outcomes
|
||
Terminated |
NCT04612491 -
Pre-operative Consultation on Patient Anxiety and First-time Mohs Micrographic Surgery
|
||
Recruiting |
NCT06397287 -
PROM Project Urology
|
||
Recruiting |
NCT04444544 -
Quality of Life and High-Risk Abdominal Cancer Surgery
|
||
Completed |
NCT04204785 -
Noise in the OR at Induction: Patient and Anesthesiologists Perceptions
|
N/A | |
Completed |
NCT03432429 -
Real Time Tissue Characterisation Using Mass Spectrometry REI-EXCISE iKnife Study
|
||
Completed |
NCT04176822 -
Designing Animated Movie for Preoperative Period
|
N/A | |
Recruiting |
NCT05370404 -
Prescribing vs. Recommending Over-The-Counter (PROTECT) Analgesics for Patients With Postoperative Pain:
|
N/A | |
Not yet recruiting |
NCT05467319 -
Ferric Derisomaltose/Iron Isomaltoside and Outcomes in the Recovery of Gynecologic Oncology ERAS
|
Phase 3 | |
Recruiting |
NCT04602429 -
Children's Acute Surgical Abdomen Programme
|
||
Completed |
NCT03124901 -
Accuracy of Noninvasive Pulse Oximeter Measurement of Hemoglobin for Rainbow DCI Sensor
|
N/A | |
Completed |
NCT04595695 -
The Effect of Clear Masks in Improving Patient Relationships
|
N/A | |
Recruiting |
NCT06103136 -
Maestro 1.0 Post-Market Registry
|
||
Completed |
NCT05346588 -
THRIVE Feasibility Trial
|
Phase 3 | |
Completed |
NCT04059328 -
Novel Surgical Checklists for Gynecologic Laparoscopy in Haiti
|
||
Recruiting |
NCT03697278 -
Monitoring Postoperative Patient-controlled Analgesia (PCA)
|
N/A |