Surgery Clinical Trial
Official title:
The Effect of Increasing Current or Pulse Duration on Patient Movement and Intraoperative Transcranial Electric Stimulation Motor Evoked Potential Amplitude
Transcranial electric stimulation (TES) motor evoked potential (MEP) monitoring is standard during surgery risking motor system injury. The stimuli are typically 5-pulse trains with a 4 ms interstimulus interval (ISI). The pulse duration (D) is often set to 50 or 500 µs. Both are effective, but setting D to the chronaxie would be physiologically optimal and limited data suggest that mean MEP chronaxie may be near 200 µs. When necessary, one can obtain larger MEPs by increasing current (I) or D to increase stimulus charge (Q = I × D). However, this also increases patient movement that can interfere with surgery and reduce MEP acquisition frequency. The main research question is whether increasing current or pulse duration when applying intraoperative neuromonitoring produces less patient movement during surgery. As such, the IOM ISIS System will be employed for neuromonitoring and an accelerometer will be used to quantify patient movement. The constant-current TES stimulators will be used in this study with a high-precision oscilloscope. Total intravenous anesthesia (TIVA), surgery and TES MEP monitoring will proceed routinely without modification and normally involves acquiring many MEPs over several hours. The only departure from standard care will be the placement of two small accelerometers and a brief MEP sequence before skin incision to determine chronaxie and compare the effect of an equivalent increase of I or D on MEP amplitude and movement.
Transcranial electric stimulation (TES) motor evoked potential (MEP) monitoring is standard during surgery risking motor system injury. The stimuli are typically 5-pulse trains with a 4 ms interstimulus interval (ISI). The pulse duration (D) is often set to 50 or 500 µs. Both are effective, but setting D to the chronaxie would be physiologically optimal and limited data suggest that mean MEP chronaxie may be near 200 µs. When necessary, one can obtain larger MEPs by increasing current (I) or D to increase stimulus charge (Q = I × D). However, this also increases patient movement that can interfere with surgery and reduce MEP acquisition frequency. Anecdotal observations suggest that increasing D may produce larger MEPs with less movement than increasing I, but there is no published support. If true, then the optimal D for monitoring may be above the chronaxie because less movement could facilitate more frequent MEP acquisition. Finally, there is ongoing controversy about constant-current or constant-voltage TES. However, with stable resistance (R) there is no fundamental reason to prefer one or the other since they are related by Ohm's law I = V/R. Also, since threshold current and voltage vary with D their maximum levels should also vary with selected D, which could be confusing. Instead, because the International Electrotechnical Commission 50 mJ safety limit is based on energy (E = I2 × D × R = V2 × D/R), it may be more logical to apply constant-energy TES that would provide a consistent 0-50 mJ selection range at any selected D. The primary objective is to assess whether intraoperative neuromonitoring with constant current or constant voltage produces less patient movement during surgery. The secondary objectives are to compare MEP amplitudes with the different setups, to estimate the true mean or median chronaxie and to develop the concept of constant-energy TES. The main research question is whether increasing current or pulse duration when applying intraoperative neuromonitoring produces less patient movement during surgery. As such, the IOM ISIS System will be employed for neuromonitoring and an accelerometer will be used to quantify patient movement. The constant-current TES stimulators will be used in this study with a high-precision oscilloscope. The calibration will assess 5-pulse trains with a 4 ms ISI and 100 mA output across a 1000 Ω resistor at 250, 500, and 1000 µs D. Measurements will include actual I and D of each pulse, and actual ISI. Total intravenous anesthesia (TIVA), surgery and TES MEP monitoring will proceed routinely without modification and normally involves acquiring many MEPs over several hours. The only departure from standard care will be the placement of two small accelerometers and a brief MEP sequence before skin incision to determine chronaxie and compare the effect of an equivalent increase of I or D on MEP amplitude and movement. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05583916 -
Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery
|
N/A | |
Completed |
NCT04448041 -
CRANE Feasibility Study: Nutritional Intervention for Patients Undergoing Cancer Surgery in Low- and Middle-Income Countries
|
||
Completed |
NCT03213314 -
HepaT1ca: Quantifying Liver Health in Surgical Candidates for Liver Malignancies
|
N/A | |
Enrolling by invitation |
NCT05534490 -
Surgery and Functionality in Older Adults
|
N/A | |
Recruiting |
NCT04792983 -
Cognition and the Immunology of Postoperative Outcomes
|
||
Terminated |
NCT04612491 -
Pre-operative Consultation on Patient Anxiety and First-time Mohs Micrographic Surgery
|
||
Recruiting |
NCT06397287 -
PROM Project Urology
|
||
Recruiting |
NCT04444544 -
Quality of Life and High-Risk Abdominal Cancer Surgery
|
||
Completed |
NCT04204785 -
Noise in the OR at Induction: Patient and Anesthesiologists Perceptions
|
N/A | |
Completed |
NCT03432429 -
Real Time Tissue Characterisation Using Mass Spectrometry REI-EXCISE iKnife Study
|
||
Completed |
NCT04176822 -
Designing Animated Movie for Preoperative Period
|
N/A | |
Recruiting |
NCT05370404 -
Prescribing vs. Recommending Over-The-Counter (PROTECT) Analgesics for Patients With Postoperative Pain:
|
N/A | |
Not yet recruiting |
NCT05467319 -
Ferric Derisomaltose/Iron Isomaltoside and Outcomes in the Recovery of Gynecologic Oncology ERAS
|
Phase 3 | |
Recruiting |
NCT04602429 -
Children's Acute Surgical Abdomen Programme
|
||
Completed |
NCT03124901 -
Accuracy of Noninvasive Pulse Oximeter Measurement of Hemoglobin for Rainbow DCI Sensor
|
N/A | |
Completed |
NCT04595695 -
The Effect of Clear Masks in Improving Patient Relationships
|
N/A | |
Recruiting |
NCT06103136 -
Maestro 1.0 Post-Market Registry
|
||
Completed |
NCT05346588 -
THRIVE Feasibility Trial
|
Phase 3 | |
Completed |
NCT04059328 -
Novel Surgical Checklists for Gynecologic Laparoscopy in Haiti
|
||
Recruiting |
NCT03697278 -
Monitoring Postoperative Patient-controlled Analgesia (PCA)
|
N/A |