Surgery Clinical Trial
Official title:
Impact of Dexmedetomidine Supplemented Analgesia on Incidence of Delirium in Elderly Patients After Cancer Surgery: a Multicenter Randomized Controlled Trial
NCT number | NCT03012984 |
Other study ID # | 2016-10 |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | January 6, 2017 |
Est. completion date | June 11, 2022 |
Verified date | July 2023 |
Source | Peking University First Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Delirium is a frequently occurred cerebral complication in elderly patients after surgery, and its occurrence is associated with worse outcomes. Sleep disturbances is considered to be one of the most important risk factors of postoperative delirium. Previous studies showed that, for elderly patients admitted to the ICU after surgery, low-dose dexmedetomidine infusion improved the quality of sleep and decreased the incidence of delirium. The investigators hypothesize that, for elderly patients after cancer surgery, dexmedetomidine supplemented analgesia can also decrease the incidence of delirium, possibly by improving sleep quality. The purpose of this multicenter, randomized controlled trial is to investigate the impact of dexmedetomidine supplemented analgesia on the incidence of delirium in elderly patients after cancer surgery.
Status | Completed |
Enrollment | 1500 |
Est. completion date | June 11, 2022 |
Est. primary completion date | May 12, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 65 Years to 90 Years |
Eligibility | Inclusion Criteria: - Age >= 65 years, < 90 years; - Scheduled to undergo surgery for primary solid organ cancer under general anesthesia, with an expected duration of surgery >=2 hours; - Planned to use patient-controlled intravenous analgesia after surgery; - Provide written informed consent. Exclusion Criteria: - Preoperative history of schizophrenia, epilepsy, parkinsonism or myasthenia gravis; - Preoperative radio- or chemotherapy; - Inability to communicate in the preoperative period because of coma, profound dementia or language barrier; - Preoperative obstructive sleep apnea (previously diagnosed as obstructive sleep apnea, or a STOP-Bang score >= 3); - Brain trauma or neurosurgery; - Preoperative left ventricular ejection fraction < 30%, sick sinus syndrome, severe sinus bradycardia (< 50 beats per minute), or second-degree or above atrioventricular block without pacemaker; - Severe hepatic dysfunction (Child-Pugh class C) or severe renal dysfunction (requirement of renal replacement therapy before surgery); - ASA classification >= IV. |
Country | Name | City | State |
---|---|---|---|
China | Affiliated Hospital of Hebei University | Baoding | Hebei |
China | Peking University First Hospital | Beijing | Beijing |
China | Peking University International Hospital | Beijing | Beijing |
China | The Third Xiangya Hospital of Central South University | Changsha | Hunan |
China | Chongqing University Fuling Hospital | Chongqing | Chongqing |
China | Guizhou Provincial People's Hospital | Guiyang | Guizhou |
China | Zhongda Hospital Southeast University | Nanjing | Jiangsu |
China | Qingdao Municipal Hospital | Qingdao | Shandong |
China | Shanxi Provincial Cancer Hospital | Taiyuan | Shanxi |
China | Tianjin Hospital of ITCWM-Nankai Hospital | Tianjin | Tianjin |
China | The Second Affiliated Hospital of Air Force Medical University | Xi'an | Shaanxi |
Lead Sponsor | Collaborator |
---|---|
Peking University First Hospital | Affiliated Hospital of Hebei University, Chongqing University Fuling Hospital, Guizhou Provincial People's Hospital, Peking University International Hospital, Qingdao Municipal Hospital, Shanxi Provincial Cancer Hospital, The Second Affiliated Hospital of Air Force Medical University, The Third Xiangya Hospital of Central South University, Tianjin Hospital of ITCWM-Nankai Hospital, Zhongda Hospital |
China,
Abelha FJ, Luis C, Veiga D, Parente D, Fernandes V, Santos P, Botelho M, Santos A, Santos C. Outcome and quality of life in patients with postoperative delirium during an ICU stay following major surgery. Crit Care. 2013 Oct 29;17(5):R257. doi: 10.1186/cc13084. — View Citation
Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, Georgopoulos D. Effects of dexmedetomidine on sleep quality in critically ill patients: a pilot study. Anesthesiology. 2014 Oct;121(4):801-7. doi: 10.1097/ALN.0000000000000361. — View Citation
Arcangeli A, D'Alo C, Gaspari R. Dexmedetomidine use in general anaesthesia. Curr Drug Targets. 2009 Aug;10(8):687-95. doi: 10.2174/138945009788982423. — View Citation
Bekker A, Haile M, Kline R, Didehvar S, Babu R, Martiniuk F, Urban M. The effect of intraoperative infusion of dexmedetomidine on the quality of recovery after major spinal surgery. J Neurosurg Anesthesiol. 2013 Jan;25(1):16-24. doi: 10.1097/ANA.0b013e31826318af. — View Citation
Bickel H, Gradinger R, Kochs E, Forstl H. High risk of cognitive and functional decline after postoperative delirium. A three-year prospective study. Dement Geriatr Cogn Disord. 2008;26(1):26-31. doi: 10.1159/000140804. Epub 2008 Jun 24. — View Citation
Brummel NE, Girard TD. Preventing delirium in the intensive care unit. Crit Care Clin. 2013 Jan;29(1):51-65. doi: 10.1016/j.ccc.2012.10.007. — View Citation
Can M, Gul S, Bektas S, Hanci V, Acikgoz S. Effects of dexmedetomidine or methylprednisolone on inflammatory responses in spinal cord injury. Acta Anaesthesiol Scand. 2009 Sep;53(8):1068-72. doi: 10.1111/j.1399-6576.2009.02019.x. Epub 2009 Jun 10. — View Citation
Coull JT, Jones ME, Egan TD, Frith CD, Maze M. Attentional effects of noradrenaline vary with arousal level: selective activation of thalamic pulvinar in humans. Neuroimage. 2004 May;22(1):315-22. doi: 10.1016/j.neuroimage.2003.12.022. — View Citation
de Rooij SE, van Munster BC, Korevaar JC, Levi M. Cytokines and acute phase response in delirium. J Psychosom Res. 2007 May;62(5):521-5. doi: 10.1016/j.jpsychores.2006.11.013. — View Citation
Dyer CB, Ashton CM, Teasdale TA. Postoperative delirium. A review of 80 primary data-collection studies. Arch Intern Med. 1995 Mar 13;155(5):461-5. doi: 10.1001/archinte.155.5.461. — View Citation
Friese RS. Sleep and recovery from critical illness and injury: a review of theory, current practice, and future directions. Crit Care Med. 2008 Mar;36(3):697-705. doi: 10.1097/CCM.0B013E3181643F29. — View Citation
Fujioka N, Nguyen J, Chen C, Li Y, Pasrija T, Niehans G, Johnson KN, Gupta V, Kratzke RA, Gupta K. Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth Analg. 2011 Dec;113(6):1353-64. doi: 10.1213/ANE.0b013e318232b35a. Epub 2011 Oct 14. — View Citation
Halaszynski TM. Pain management in the elderly and cognitively impaired patient: the role of regional anesthesia and analgesia. Curr Opin Anaesthesiol. 2009 Oct;22(5):594-9. doi: 10.1097/ACO.0b013e32833020dc. — View Citation
Hofer SO, Molema G, Hermens RA, Wanebo HJ, Reichner JS, Hoekstra HJ. The effect of surgical wounding on tumour development. Eur J Surg Oncol. 1999 Jun;25(3):231-43. doi: 10.1053/ejso.1998.0634. — View Citation
Huupponen E, Maksimow A, Lapinlampi P, Sarkela M, Saastamoinen A, Snapir A, Scheinin H, Scheinin M, Merilainen P, Himanen SL, Jaaskelainen S. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008 Feb;52(2):289-94. doi: 10.1111/j.1399-6576.2007.01537.x. Epub 2007 Nov 14. — View Citation
Kosar CM, Tabloski PA, Travison TG, Jones RN, Schmitt EM, Puelle MR, Inloes JB, Saczynski JS, Marcantonio ER, Meagher D, Reid MC, Inouye SK. EFFECT OF PREOPERATIVE PAIN AND DEPRESSIVE SYMPTOMS ON THE DEVELOPMENT OF POSTOPERATIVE DELIRIUM. Lancet Psychiatry. 2014 Nov;1(6):431-436. doi: 10.1016/S2215-0366(14)00006-6. — View Citation
Lat I, McMillian W, Taylor S, Janzen JM, Papadopoulos S, Korth L, Ehtisham A, Nold J, Agarwal S, Azocar R, Burke P. The impact of delirium on clinical outcomes in mechanically ventilated surgical and trauma patients. Crit Care Med. 2009 Jun;37(6):1898-905. doi: 10.1097/CCM.0b013e31819ffe38. — View Citation
Lescot T, Karvellas CJ, Chaudhury P, Tchervenkov J, Paraskevas S, Barkun J, Metrakos P, Goldberg P, Magder S. Postoperative delirium in the intensive care unit predicts worse outcomes in liver transplant recipients. Can J Gastroenterol. 2013 Apr;27(4):207-12. doi: 10.1155/2013/289185. — View Citation
Ma J, Zhang XL, Wang CY, Lin Z, Tao JR, Liu HC. Dexmedetomidine alleviates the spinal cord ischemia-reperfusion injury through blocking mast cell degranulation. Int J Clin Exp Med. 2015 Sep 15;8(9):14741-9. eCollection 2015. — View Citation
McDaniel M, Brudney C. Postoperative delirium: etiology and management. Curr Opin Crit Care. 2012 Aug;18(4):372-6. doi: 10.1097/MCC.0b013e3283557211. — View Citation
Memis D, Hekimoglu S, Vatan I, Yandim T, Yuksel M, Sut N. Effects of midazolam and dexmedetomidine on inflammatory responses and gastric intramucosal pH to sepsis, in critically ill patients. Br J Anaesth. 2007 Apr;98(4):550-2. doi: 10.1093/bja/aem017. No abstract available. — View Citation
Mo Y, Zimmermann AE. Role of dexmedetomidine for the prevention and treatment of delirium in intensive care unit patients. Ann Pharmacother. 2013 Jun;47(6):869-76. doi: 10.1345/aph.1AR708. — View Citation
Mu DL, Wang DX, Li LH, Shan GJ, Li J, Yu QJ, Shi CX. High serum cortisol level is associated with increased risk of delirium after coronary artery bypass graft surgery: a prospective cohort study. Crit Care. 2010;14(6):R238. doi: 10.1186/cc9393. Epub 2010 Dec 30. — View Citation
Nguyen DP, Li J, Tewari AK. Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int. 2014 Jun;113(6):986-92. doi: 10.1111/bju.12452. — View Citation
Oto J, Yamamoto K, Koike S, Onodera M, Imanaka H, Nishimura M. Sleep quality of mechanically ventilated patients sedated with dexmedetomidine. Intensive Care Med. 2012 Dec;38(12):1982-9. doi: 10.1007/s00134-012-2685-y. Epub 2012 Sep 8. — View Citation
Ouimet S, Kavanagh BP, Gottfried SB, Skrobik Y. Incidence, risk factors and consequences of ICU delirium. Intensive Care Med. 2007 Jan;33(1):66-73. doi: 10.1007/s00134-006-0399-8. Epub 2006 Nov 11. — View Citation
Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, Shintani AK, Thompson JL, Jackson JC, Deppen SA, Stiles RA, Dittus RS, Bernard GR, Ely EW. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007 Dec 12;298(22):2644-53. doi: 10.1001/jama.298.22.2644. — View Citation
Peng K, Liu HY, Wu SR, Cheng H, Ji FH. Effects of Combining Dexmedetomidine and Opioids for Postoperative Intravenous Patient-controlled Analgesia: A Systematic Review and Meta-analysis. Clin J Pain. 2015 Dec;31(12):1097-104. doi: 10.1097/AJP.0000000000000219. — View Citation
Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009 Dec 1;180(11):1092-7. doi: 10.1164/rccm.200904-0537OC. Epub 2009 Sep 10. — View Citation
Quinlan N, Rudolph JL. Postoperative delirium and functional decline after noncardiac surgery. J Am Geriatr Soc. 2011 Nov;59 Suppl 2:S301-4. doi: 10.1111/j.1532-5415.2011.03679.x. — View Citation
Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009 Feb 4;301(5):489-99. doi: 10.1001/jama.2009.56. Epub 2009 Feb 2. — View Citation
Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, Kirchner VA, Koodie L, Ma J, Meng J, Barke RA. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol. 2011 Dec;6(4):442-65. doi: 10.1007/s11481-011-9292-5. Epub 2011 Jul 26. — View Citation
Rudolph JL, Ramlawi B, Kuchel GA, McElhaney JE, Xie D, Sellke FW, Khabbaz K, Levkoff SE, Marcantonio ER. Chemokines are associated with delirium after cardiac surgery. J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):184-9. doi: 10.1093/gerona/63.2.184. — View Citation
Schrepf A, Thaker PH, Goodheart MJ, Bender D, Slavich GM, Dahmoush L, Penedo F, DeGeest K, Mendez L, Lubaroff DM, Cole SW, Sood AK, Lutgendorf SK. Diurnal cortisol and survival in epithelial ovarian cancer. Psychoneuroendocrinology. 2015 Mar;53:256-67. doi: 10.1016/j.psyneuen.2015.01.010. Epub 2015 Jan 20. — View Citation
Shi CM, Wang DX, Chen KS, Gu XE. Incidence and risk factors of delirium in critically ill patients after non-cardiac surgery. Chin Med J (Engl). 2010 Apr 20;123(8):993-9. — View Citation
Siddiqi N, Harrison JK, Clegg A, Teale EA, Young J, Taylor J, Simpkins SA. Interventions for preventing delirium in hospitalised non-ICU patients. Cochrane Database Syst Rev. 2016 Mar 11;3:CD005563. doi: 10.1002/14651858.CD005563.pub3. — View Citation
Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL. The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for spinal adrenergic-opioid synergy. J Neurosci. 1997 Sep 15;17(18):7157-65. doi: 10.1523/JNEUROSCI.17-18-07157.1997. — View Citation
Stuck A, Clark MJ, Connelly CD. Preventing intensive care unit delirium: a patient-centered approach to reducing sleep disruption. Dimens Crit Care Nurs. 2011 Nov-Dec;30(6):315-20. doi: 10.1097/DCC.0b013e31822fa97c. — View Citation
Su X, Meng ZT, Wu XH, Cui F, Li HL, Wang DX, Zhu X, Zhu SN, Maze M, Ma D. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet. 2016 Oct 15;388(10054):1893-1902. doi: 10.1016/S0140-6736(16)30580-3. Epub 2016 Aug 16. — View Citation
Szumita PM, Baroletti SA, Anger KE, Wechsler ME. Sedation and analgesia in the intensive care unit: evaluating the role of dexmedetomidine. Am J Health Syst Pharm. 2007 Jan 1;64(1):37-44. doi: 10.2146/ajhp050508. — View Citation
Taniguchi T, Kidani Y, Kanakura H, Takemoto Y, Yamamoto K. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit Care Med. 2004 Jun;32(6):1322-6. doi: 10.1097/01.ccm.0000128579.84228.2a. — View Citation
Tasdogan M, Memis D, Sut N, Yuksel M. Results of a pilot study on the effects of propofol and dexmedetomidine on inflammatory responses and intraabdominal pressure in severe sepsis. J Clin Anesth. 2009 Sep;21(6):394-400. doi: 10.1016/j.jclinane.2008.10.010. — View Citation
Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014 Jul;69(7):693-700. doi: 10.1111/anae.12636. Epub 2014 Apr 28. — View Citation
Van Rompaey B, Schuurmans MJ, Shortridge-Baggett LM, Truijen S, Elseviers M, Bossaert L. Long term outcome after delirium in the intensive care unit. J Clin Nurs. 2009 Dec;18(23):3349-57. doi: 10.1111/j.1365-2702.2009.02933.x. Epub 2009 Sep 4. — View Citation
Vassou D, Notas G, Hatzoglou A, Castanas E, Kampa M. Opioids increase bladder cancer cell migration via bradykinin B2 receptors. Int J Oncol. 2011 Sep;39(3):697-707. doi: 10.3892/ijo.2011.1063. Epub 2011 Jun 3. — View Citation
* Note: There are 45 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Other | Richmond Agitation-Sedation Scale (RASS) score during the first 5 days after surgery | Richmond Agitation-Sedation Scale (RASS) score during the first 5 days after surgery | During the first 5 days after surgery | |
Other | Cumulative morphine consumption during the first 3 days after surgery | Cumulative morphine consumption during the first 3 days after surgery | During the first 3 days after surgery | |
Other | Numeric Rating Scale (NRS) pain score during the first 5 days after surgery | Numeric Rating Scale (NRS) pain score during the first 5 days after surgery | During the first 5 days after surgery | |
Other | Numeric Rating Scale (NRS) sleep quality score during the first 5 days after surgery | Numeric Rating Scale (NRS) sleep quality score during the first 5 days after surgery | During the first 5 days after surgery | |
Primary | Incidence of delirium within 5 days after surgery | Incidence of delirium within 5 days after surgery | During the first 5 days after surgery | |
Secondary | Daily prevalence of delirium during the first 5 postoperative days | Daily prevalence of delirium during the first 5 postoperative days | During the first 5 postoperative days | |
Secondary | Length of stay in hospital after surgery | Length of stay in hospital after surgery | Up to 30 days after surgery | |
Secondary | Incidence of non-delirium complications after surgery | Incidence of non-delirium complications after surgery | Up to 30 days after surgery | |
Secondary | 30-day all-cause mortality after surgery | 30-day all-cause mortality after surgery | At the time of 30 days after surgery | |
Secondary | Quality of life in survival patients on the 30th day after surgery | Assessed with World Health Organization Quality of Life-Bref (WHOQOL-BREF) | On the 30th day after surgery | |
Secondary | Cognitive function in survival patients on the 30th day after surgery | Assessed with Telephone Interview for Cognitive Status-Modified (TICS-M) | On the 30th day after surgery |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05583916 -
Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery
|
N/A | |
Completed |
NCT04448041 -
CRANE Feasibility Study: Nutritional Intervention for Patients Undergoing Cancer Surgery in Low- and Middle-Income Countries
|
||
Completed |
NCT03213314 -
HepaT1ca: Quantifying Liver Health in Surgical Candidates for Liver Malignancies
|
N/A | |
Enrolling by invitation |
NCT05534490 -
Surgery and Functionality in Older Adults
|
N/A | |
Recruiting |
NCT04792983 -
Cognition and the Immunology of Postoperative Outcomes
|
||
Terminated |
NCT04612491 -
Pre-operative Consultation on Patient Anxiety and First-time Mohs Micrographic Surgery
|
||
Recruiting |
NCT06397287 -
PROM Project Urology
|
||
Recruiting |
NCT04444544 -
Quality of Life and High-Risk Abdominal Cancer Surgery
|
||
Completed |
NCT04204785 -
Noise in the OR at Induction: Patient and Anesthesiologists Perceptions
|
N/A | |
Completed |
NCT03432429 -
Real Time Tissue Characterisation Using Mass Spectrometry REI-EXCISE iKnife Study
|
||
Completed |
NCT04176822 -
Designing Animated Movie for Preoperative Period
|
N/A | |
Recruiting |
NCT05370404 -
Prescribing vs. Recommending Over-The-Counter (PROTECT) Analgesics for Patients With Postoperative Pain:
|
N/A | |
Not yet recruiting |
NCT05467319 -
Ferric Derisomaltose/Iron Isomaltoside and Outcomes in the Recovery of Gynecologic Oncology ERAS
|
Phase 3 | |
Recruiting |
NCT04602429 -
Children's Acute Surgical Abdomen Programme
|
||
Completed |
NCT03124901 -
Accuracy of Noninvasive Pulse Oximeter Measurement of Hemoglobin for Rainbow DCI Sensor
|
N/A | |
Completed |
NCT04595695 -
The Effect of Clear Masks in Improving Patient Relationships
|
N/A | |
Recruiting |
NCT06103136 -
Maestro 1.0 Post-Market Registry
|
||
Completed |
NCT05346588 -
THRIVE Feasibility Trial
|
Phase 3 | |
Completed |
NCT04059328 -
Novel Surgical Checklists for Gynecologic Laparoscopy in Haiti
|
||
Recruiting |
NCT03697278 -
Monitoring Postoperative Patient-controlled Analgesia (PCA)
|
N/A |