Substance-Related Disorders Clinical Trial
Official title:
Transcranial Direct Current Stimulation on Inhibitory Control in Addictions: a Triple-blinded, Sham-controlled Clinical Trial.
Verified date | April 2022 |
Source | Universidad de Almeria |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The research in neuroscience of the last 20 years is defined, in addition to continuing to advance in the field of behavioral and pharmacological therapy, by the birth and development of a new therapeutic category, called neuromodulation. Neuromodulation offers the possibility of producing changes in the Nervous System (SN) and therefore, in behavior, in addition to lasting over time. One of the most used non-invasive neuromodulation techniques is transcranial direct current stimulation (tDCS). The benefits of tDCS are promising and varied, so it is a potential neurorehabilitation tool, which has also shown its greatest effectiveness when accompanied by complementary rehabilitation treatment. The present study focuses on the effect of tDCS on addiction. Specifically, there is a great problem with the high rates of relapse presented by those individuals who try to abandon addictive behavior. Therefore, the maintenance of the abstinence period is the central theme of addiction research and the main challenge of rehabilitation at present. For that aim, the intervention will be carried out in a sample in the intermediate phase (internal) in the NOESSO (No EstáS Sólo) therapeutic community (Almería, Spain), between day 15 after arrival and the first day to leave on leave (day 45-60). The research will be made up of a previous period of selection and collection of data related to addiction, together with two phases or moments of correlative intervention and evaluation. Users will receive a bilateral (F3/F4) and repeated stimulation of 2 mA intensity for 20 min each, that is, every 24h for 5 consecutive days in each phase. Through this procedure, the aim is to seek to increase adherence to treatment in the early intervention phase and decrease the dropout rate due to the enhancement of inhibitory control. On the other hand, in the second phase, advanced intervention is sought to reduce craving, through an improvement in inhibitory and emotional control at the time of returning to the context of real consumption. In order to increase the knowledge about intra-individual differences in the effect of tDCS, researchers will compare the early intervention (Phase 1, at the begging of the rehabilitation process) with the advanced intervention (Phase 2, right before the first leave).
Status | Enrolling by invitation |
Enrollment | 200 |
Est. completion date | December 31, 2022 |
Est. primary completion date | July 15, 2022 |
Accepts healthy volunteers | No |
Gender | Male |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Substance abuse - Under clinical treatment at the Noesso Addiction Rehabilitation Center La Quinta, Laujar de Andarax, Spain - Participation approved by the clinical team - Participation approved by the experimental team by means of the Göttingen screening questionnaire - Signed informed consent - At least 26 points in the Montreal Cognitive Assessment (MOCA) evaluation Exclusion Criteria: - Epilepsy or history of epilepsy (convulsions due compsumtion not included) - Cardiopathy or cardiac electronic devices - Skin reaction or high sensitivity to tDCS - Head metallic implant - Serious mental disease - Exclusion because of clinical criteria (physician, psychologist) |
Country | Name | City | State |
---|---|---|---|
Spain | Psychobiology Lab | Almería |
Lead Sponsor | Collaborator |
---|---|
Universidad de Almeria | Secretaría General de Universidades, Investigación y Tecnología, Junta de Andalucía, Spain |
Spain,
Aree-uea B, Auvichayapat N, Janyacharoen T, Siritaratiwat W, Amatachaya A, Prasertnoo J, Tunkamnerdthai O, Thinkhamrop B, Jensen MP, Auvichayapat P. Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation. J Med Assoc Thai. 2014 Sep;97(9):954-62. — View Citation
Bachtiar V, Near J, Johansen-Berg H, Stagg CJ. Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. Elife. 2015 Sep 18;4:e08789. doi: 10.7554/eLife.08789. — View Citation
Bajbouj M, Padberg F. A perfect match: noninvasive brain stimulation and psychotherapy. Eur Arch Psychiatry Clin Neurosci. 2014 Nov;264 Suppl 1:S27-33. doi: 10.1007/s00406-014-0540-6. Epub 2014 Sep 25. Review. — View Citation
Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013 Sep;108:44-79. doi: 10.1016/j.pneurobio.2013.06.005. Epub 2013 Jul 13. Review. — View Citation
Batista EK, Klauss J, Fregni F, Nitsche MA, Nakamura-Palacios EM. A Randomized Placebo-Controlled Trial of Targeted Prefrontal Cortex Modulation with Bilateral tDCS in Patients with Crack-Cocaine Dependence. Int J Neuropsychopharmacol. 2015 Jun 10;18(12). pii: pyv066. doi: 10.1093/ijnp/pyv066. — View Citation
Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol. 2009 Jun;120(6):1033-4. doi: 10.1016/j.clinph.2009.03.018. Epub 2009 Apr 24. — View Citation
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016 Sep-Oct;9(5):641-661. doi: 10.1016/j.brs.2016.06.004. Epub 2016 Jun 15. Review. — View Citation
Bobes García J, G.-Portilla MP, Bascarán Fernández MT, Saiz Martínez PA, Bousoño García M. Banco de instrumentos básicos para la práctica de la psiquiatría clínica. Ars Médica, Barcelona. 2004.
Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, Basaglia A, Fregni F. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 2008 Jan 1;92(1-3):55-60. Epub 2007 Jul 19. — View Citation
Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny MF, Saoud M, Mechri A, Poulet E. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry. 2012 Jul;169(7):719-24. doi: 10.1176/appi.ajp.2012.11071091. Erratum in: Am J Psychiatry. 2012 Dec 1;169(12):1321. — View Citation
Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010 Nov 11;468(7321):305-9. doi: 10.1038/nature09511. Epub 2010 Nov 3. — View Citation
Coles AS, Kozak K, George TP. A review of brain stimulation methods to treat substance use disorders. Am J Addict. 2018 Mar;27(2):71-91. doi: 10.1111/ajad.12674. Epub 2018 Feb 19. Review. — View Citation
Cosmo C, Baptista AF, de Araújo AN, do Rosário RS, Miranda JG, Montoya P, de Sena EP. A Randomized, Double-Blind, Sham-Controlled Trial of Transcranial Direct Current Stimulation in Attention-Deficit/Hyperactivity Disorder. PLoS One. 2015 Aug 12;10(8):e0135371. doi: 10.1371/journal.pone.0135371. eCollection 2015. — View Citation
Costa TL, Lapenta OM, Boggio PS, Ventura DF. Transcranial direct current stimulation as a tool in the study of sensory-perceptual processing. Atten Percept Psychophys. 2015 Aug;77(6):1813-40. doi: 10.3758/s13414-015-0932-3. Review. — View Citation
Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011 Feb 24;69(4):680-94. doi: 10.1016/j.neuron.2011.01.020. — View Citation
De Ridder D, Perera S, Vanneste S. State of the Art: Novel Applications for Cortical Stimulation. Neuromodulation. 2017 Apr;20(3):206-214. doi: 10.1111/ner.12593. Epub 2017 Mar 28. Review. — View Citation
den Uyl TE, Gladwin TE, Wiers RW. Transcranial direct current stimulation, implicit alcohol associations and craving. Biol Psychol. 2015 Feb;105:37-42. doi: 10.1016/j.biopsycho.2014.12.004. Epub 2014 Dec 23. — View Citation
Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci. 2009 Jun 3;29(22):7271-7. doi: 10.1523/JNEUROSCI.0065-09.2009. — View Citation
Dubljevic V, Saigle V, Racine E. The rising tide of tDCS in the media and academic literature. Neuron. 2014 May 21;82(4):731-6. doi: 10.1016/j.neuron.2014.05.003. — View Citation
Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Théoret H, Boggio PS, Fregni F. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007 Jun 6;27(23):6212-8. — View Citation
Filho PR, Vercelino R, Cioato SG, Medeiros LF, de Oliveira C, Scarabelot VL, Souza A, Rozisky JR, Quevedo Ada S, Adachi LN, Sanches PR, Fregni F, Caumo W, Torres IL. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: Long-lasting effect. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Jan 4;64:44-51. doi: 10.1016/j.pnpbp.2015.06.016. Epub 2015 Jul 7. — View Citation
Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, Sahakian BJ, Robbins TW, Bullmore ET, Hollander E. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010 Feb;35(3):591-604. doi: 10.1038/npp.2009.185. Epub 2009 Nov 25. Review. — View Citation
Flöel A, Suttorp W, Kohl O, Kürten J, Lohmann H, Breitenstein C, Knecht S. Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging. 2012 Aug;33(8):1682-9. doi: 10.1016/j.neurobiolaging.2011.05.007. Epub 2011 Jun 17. — View Citation
Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005 Sep;166(1):23-30. Epub 2005 Jul 6. — View Citation
Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010 Apr 29;66(2):198-204. doi: 10.1016/j.neuron.2010.03.035. — View Citation
Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. Epub 2006 Jan 19. — View Citation
Gilmore CS, Dickmann PJ, Nelson BG, Lamberty GJ, Lim KO. Transcranial Direct Current Stimulation (tDCS) paired with a decision-making task reduces risk-taking in a clinically impulsive sample. Brain Stimul. 2018 Mar - Apr;11(2):302-309. doi: 10.1016/j.brs.2017.11.011. Epub 2017 Nov 22. — View Citation
Gladwin TE, den Uyl TE, Fregni FF, Wiers RW. Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci Lett. 2012 Mar 14;512(1):33-7. doi: 10.1016/j.neulet.2012.01.056. Epub 2012 Feb 2. — View Citation
Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011 Oct 20;12(11):652-69. doi: 10.1038/nrn3119. Review. — View Citation
Grecco LA, Duarte Nde A, de Mendonça ME, Pasini H, Lima VL, Franco RC, de Oliveira LV, de Carvalho Pde T, Corrêa JC, Collange NZ, Sampaio LM, Galli M, Fregni F, Oliveira CS. Effect of transcranial direct current stimulation combined with gait and mobility training on functionality in children with cerebral palsy: study protocol for a double-blind randomized controlled clinical trial. BMC Pediatr. 2013 Oct 11;13:168. doi: 10.1186/1471-2431-13-168. — View Citation
Hochman S, Henik A, Kalanthroff E. Stopping at a red light: Recruitment of inhibitory control by environmental cues. PLoS One. 2018 May 3;13(5):e0196199. doi: 10.1371/journal.pone.0196199. eCollection 2018. — View Citation
Hodgson RJ, Rachman S. Obsessional-compulsive complaints. Behav Res Ther. 1977;15(5):389-95. — View Citation
Hsu TY, Juan CH, Tseng P. Individual Differences and State-Dependent Responses in Transcranial Direct Current Stimulation. Front Hum Neurosci. 2016 Dec 21;10:643. doi: 10.3389/fnhum.2016.00643. eCollection 2016. — View Citation
Javadi AH, Cheng P. Transcranial direct current stimulation (tDCS) enhances reconsolidation of long-term memory. Brain Stimul. 2013 Jul;6(4):668-74. doi: 10.1016/j.brs.2012.10.007. Epub 2012 Oct 31. — View Citation
Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage. 2014 Oct 1;99:237-43. doi: 10.1016/j.neuroimage.2014.05.070. Epub 2014 Jun 3. — View Citation
Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015 Jan-Feb;8(1):76-87. doi: 10.1016/j.brs.2014.10.012. Epub 2014 Oct 28. Review. — View Citation
Lawrence AJ, Luty J, Bogdan NA, Sahakian BJ, Clark L. Problem gamblers share deficits in impulsive decision-making with alcohol-dependent individuals. Addiction. 2009 Jun;104(6):1006-15. doi: 10.1111/j.1360-0443.2009.02533.x. — View Citation
Lewis PM, Thomson RH, Rosenfeld JV, Fitzgerald PB. Brain Neuromodulation Techniques: A Review. Neuroscientist. 2016 Aug;22(4):406-21. doi: 10.1177/1073858416646707. Epub 2016 Apr 29. Review. — View Citation
Marteau TM, Bekker H. The development of a six-item short-form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI). Br J Clin Psychol. 1992 Sep;31(3):301-6. Erratum in: Br J Clin Psychol. 2020 Jun;59(2):276. — View Citation
McKendrick R, Parasuraman R, Ayaz H. Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): expanding vistas for neurocognitive augmentation. Front Syst Neurosci. 2015 Mar 9;9:27. doi: 10.3389/fnsys.2015.00027. eCollection 2015. — View Citation
Mehta S, McIntyre A, Guy S, Teasell RW, Loh E. Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: a meta-analysis. Spinal Cord. 2015 Nov;53(11):780-5. doi: 10.1038/sc.2015.118. Epub 2015 Jul 21. Review. — View Citation
Minhas P, Datta A, Bikson M. Cutaneous perception during tDCS: role of electrode shape and sponge salinity. Clin Neurophysiol. 2011 Apr;122(4):637-8. doi: 10.1016/j.clinph.2010.09.023. Epub 2010 Nov 12. — View Citation
Moliadze V, Antal A, Paulus W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol. 2010 Dec;121(12):2165-71. doi: 10.1016/j.clinph.2010.04.033. Epub 2010 Jun 15. — View Citation
Moreno M, Estevez AF, Zaldivar F, Montes JM, Gutiérrez-Ferre VE, Esteban L, Sánchez-Santed F, Flores P. Impulsivity differences in recreational cannabis users and binge drinkers in a university population. Drug Alcohol Depend. 2012 Aug 1;124(3):355-62. doi: 10.1016/j.drugalcdep.2012.02.011. Epub 2012 Mar 15. — View Citation
Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009 Sep;219(1):14-9. doi: 10.1016/j.expneurol.2009.03.038. Epub 2009 Apr 5. Review. — View Citation
Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008 Jul;1(3):206-23. doi: 10.1016/j.brs.2008.06.004. Epub 2008 Jul 1. Review. — View Citation
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3:633-9. — View Citation
Page SJ, Cunningham DA, Plow E, Blazak B. It takes two: noninvasive brain stimulation combined with neurorehabilitation. Arch Phys Med Rehabil. 2015 Apr;96(4 Suppl):S89-93. doi: 10.1016/j.apmr.2014.09.019. — View Citation
Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. Epub 2007 Jan 24. — View Citation
Rango M, Cogiamanian F, Marceglia S, Barberis B, Arighi A, Biondetti P, Priori A. Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn Reson Med. 2008 Oct;60(4):782-9. doi: 10.1002/mrm.21709. — View Citation
Saba G, Moukheiber A, Pelissolo A. Transcranial cortical stimulation in the treatment of obsessive-compulsive disorders: efficacy studies. Curr Psychiatry Rep. 2015 May;17(5):36. doi: 10.1007/s11920-015-0571-3. Review. — View Citation
Salling MC, Martinez D. Brain Stimulation in Addiction. Neuropsychopharmacology. 2016 Nov;41(12):2798-2809. doi: 10.1038/npp.2016.80. Epub 2016 May 31. Review. — View Citation
Sánchez-Kuhn A, León JJ, Gôngora K, Pérez-Fernández C, Sánchez-Santed F, Moreno M, Flores P. Go/No-Go task performance predicts differences in compulsivity but not in impulsivity personality traits. Psychiatry Res. 2017 Nov;257:270-275. doi: 10.1016/j.psychres.2017.07.064. Epub 2017 Jul 31. — View Citation
Sánchez-Kuhn A, Pérez-Fernández C, Cánovas R, Flores P, Sánchez-Santed F. Transcranial direct current stimulation as a motor neurorehabilitation tool: an empirical review. Biomed Eng Online. 2017 Aug 18;16(Suppl 1):76. doi: 10.1186/s12938-017-0361-8. Review. — View Citation
Sánchez-Kuhn A, Pérez-Fernández C, Moreno M, Flores P, Sánchez-Santed F. Differential Effects of Transcranial Direct Current Stimulation (tDCS) Depending on Previous Musical Training. Front Psychol. 2018 Sep 10;9:1465. doi: 10.3389/fpsyg.2018.01465. eCollection 2018. — View Citation
Senço NM, Huang Y, D'Urso G, Parra LC, Bikson M, Mantovani A, Shavitt RG, Hoexter MQ, Miguel EC, Brunoni AR. Transcranial direct current stimulation in obsessive-compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes. Expert Rev Med Devices. 2015 Jul;12(4):381-91. doi: 10.1586/17434440.2015.1037832. Epub 2015 May 17. Review. — View Citation
Serre F, Fatseas M, Denis C, Swendsen J, Auriacombe M. Predictors of craving and substance use among patients with alcohol, tobacco, cannabis or opiate addictions: Commonalities and specificities across substances. Addict Behav. 2018 Aug;83:123-129. doi: 10.1016/j.addbeh.2018.01.041. Epub 2018 Feb 2. — View Citation
Shen B, Yin Y, Wang J, Zhou X, McClure SM, Li J. High-definition tDCS alters impulsivity in a baseline-dependent manner. Neuroimage. 2016 Dec;143:343-352. doi: 10.1016/j.neuroimage.2016.09.006. Epub 2016 Sep 6. — View Citation
Stanford MS, Mathias CW, Dougherty DM, Lake SL, Anderson NE, Patton JH. Fifty years of the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences. 2009; 47(5): 385-395.
Tanaka S, Watanabe K. [Transcranial direct current stimulation--a new tool for human cognitive neuroscience]. Brain Nerve. 2009 Jan;61(1):53-64. Review. Japanese. — View Citation
Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, Alonso-Alonso M, Audette M, Malbert CH, Stice E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015 Mar 24;8:1-31. doi: 10.1016/j.nicl.2015.03.016. eCollection 2015. Review. — View Citation
Vandermeeren Y, Jamart J, Ossemann M. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions. BMC Neurosci. 2010 Mar 16;11:38. doi: 10.1186/1471-2202-11-38. — View Citation
Volpato C, Piccione F, Cavinato M, Duzzi D, Schiff S, Foscolo L, Venneri A. Modulation of affective symptoms and resting state activity by brain stimulation in a treatment-resistant case of obsessive-compulsive disorder. Neurocase. 2013 Aug;19(4):360-70. doi: 10.1080/13554794.2012.667131. Epub 2012 May 4. — View Citation
Whisman MA, Richardson ED. Normative Data on the Beck Depression Inventory--Second Edition (BDI-II) in College Students. J Clin Psychol. 2015 Sep;71(9):898-907. doi: 10.1002/jclp.22188. Epub 2015 May 7. — View Citation
Zhao S, Dou Z, Wei X, Li J, Dai M, Wang Y, Yang Q, He H. Task-concurrent anodal tDCS modulates bilateral plasticity in the human suprahyoid motor cortex. Front Hum Neurosci. 2015 Jun 24;9:370. doi: 10.3389/fnhum.2015.00370. eCollection 2015. — View Citation
Zheng X, Schlaug G. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy. Front Hum Neurosci. 2015 Apr 30;9:229. doi: 10.3389/fnhum.2015.00229. eCollection 2015. — View Citation
* Note: There are 66 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Dropouts phase 1: participants that abandon the treatment phase | Number of participants that abandon the treatment phase before the first free weekend outside the center | 45-60 days | |
Primary | Dropouts phase 2: participants that abandon the treatment after the first free weekend outside the center | Number of participants that abandon the treatment after the first free weekend outside the center | 47-62 days | |
Primary | Relapses: | Number of relapses on drug comsuption during the first free weekend outside the center | 41-62 days | |
Secondary | VAS - Craving | Quantification fo drug craving by Visual Analogue Scale (VAS): This is a visual analog scale, which means that it does not present lexical items. On the contrary, the user only has to mark on the scale from 0 to 10 the degree of a perceived sensation or state of health, in this case the desire for drug (craving) | Daily during the total ten days of intervention | |
Secondary | VAS - Fatigue | Quantification fo drug craving by Visual Analogue Scale (VAS): This is a visual analog scale, which means that it does not present lexical items. On the contrary, the user only has to mark on the scale from 0 to 10 the degree of a perceived sensation or state of health, in this case fatigue. | For each interventional phase: first and fifth day | |
Secondary | STAI-E/R | Questionnaire of anxiety state / trait STAI-E / R, is one of the most used tests to measure anxiety, since it allows to differentiate between the stable anxiety in the own time of people with threatening attribution to a wide range of situations, and the anxiety that occurs at that specific moment or transitory emotional state, that the subject is conscious. | For each interventional phase: first and fifth day | |
Secondary | WHOQOL-BREF | WHOQOL-BREF is the Spanish version of the most used test in the field of health to evaluate quality of life in a generic and self-reported way. It consists of 26 items, classified into 4 dimensions (physical, psychological, social relations and environment). It is fast and effective, however it does not allow specific clinical areas to be evaluated in a concrete way. | For each interventional phase: first and fifth day | |
Secondary | Beck BDI-BECK | Beck BDI-BECK-II inventory is widely used to assess the degree of depression. It consists of 21 items indicative of symptoms such as sadness, crying, loss of pleasure, guilt, and desire for suicide according to the Diagnostic and Statistical Manual of Mental Disorders (DSM). Its administration is self-report and provides a measure of presence and severity in adults and adolescents. It is indicated for clinical psychology, neuropsychology, and forensics. | For each interventional phase: first and fifth day | |
Secondary | BIS-11 | Barratt impulsivity scale (BIS-11). It evaluates impulsivity and its subtypes: cognitive impulsivity, motor impulsivity and impulsivity related to non-planning. The scale consists of 30 Likert-type items and its administration is self-reported. This scale is widely applied in research related to clinical population and substance abuse. | For each interventional phase: first and fifth day | |
Secondary | MOCI | Maudsley Obsessional-Compulsive Inventory (MOCI) (Spanish version). It evaluates compulsivity and its subtypes: (a) checking, (b) cleanliness, (c) slowness and repetition, and (d) doubt and awareness. It has been developed in order to investigate the traits of compulsivity. The questionnaire comprises 30 items with true/false answers. The results are interpreted as a measure of the intensity of compulsive behaviors since the high false alarms in the Go/no-go task are related to a high score in the MOCI questionnaire. | For each interventional phase: first and fifth day | |
Secondary | IGT | Iowa Gambling Task (IGT): is a neurobehavioral task that measures risky decision-making. Four decks of cards will appear on the computer screen. Each participant will have to choose a card from any deck by clicking on it. The task will consist of 100 essays. In each choice, decks A and B will generate a profit of 100 points and decks C and D of 50 points. However, every 10 trials the choice of the first deck will result in a net loss of 250 points, while the choice of the second will result in a net gain of the same amount. All participants will start with 2000 points and will be instructed to maximize their profits.
The main variable Net Score: is the total score obtained by the participant. People with a low Net Score have shown a deficit in performing this task, such as people with substance addiction. |
For each interventional phase: first and fifth day | |
Secondary | Go/no-go | Go/no-go task has been widely used to assess cognitive control, compulsion, and inhibitory control of behavior. A recently published version by our research group will be used. It consist of the presentation of circles of two different colors separated by a fixing point, during 200 tests. What participants should do is respond by pressing the computer's keyboard space bar as quickly as possible if the circle that appears is green (Go test), and avoid responding to the appearance of blue circles (No-Go test). 80% of the trials will be Go trials. Both stimuli will appear on the screen for 350ms. The presentation time will be adjusted to the participant's reaction time (+50ms or -50ms). The interval between stimuli will be variable, between 800ms and 1500ms. The main variable is "false alarms", pressing the key in No-Go trials. | For each interventional phase: first and fifth day |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05054738 -
CRP and S&A for Inpatient Veterans
|
N/A | |
Recruiting |
NCT04157062 -
An Open-Label Trial of Repetitive Transcranial Magnetic Stimulation for Opioid Use Disorder
|
N/A | |
Completed |
NCT02233738 -
Group Motivational Interviewing (GMI) For Homeless Veterans In VA Services
|
N/A | |
Enrolling by invitation |
NCT06084221 -
Fatal Overdose Review Teams - Research to Enhance Surveillance Systems
|
N/A | |
Completed |
NCT02907944 -
Working With HIV Clinics to Adopt Addiction Treatments Using Implementation Facilitation
|
N/A | |
Completed |
NCT02829970 -
Helping College Students With ADHD Lead Healthier Lifestyles
|
N/A | |
Completed |
NCT02570360 -
Exercise and Treatment-as-usual in Substance Use Treatment Outcomes
|
N/A | |
Completed |
NCT02945371 -
Tailored Inhibitory Control Training to Reverse EA-linked Deficits in Mid-life
|
N/A | |
Completed |
NCT02125539 -
Field Trial of a Relapse Prevention Program for Adolescents Receiving Substance Use Treatment
|
Phase 2 | |
Completed |
NCT02715557 -
Arise: An Online Relapse Prevention Tool for Adolescent Substance Abusers
|
N/A | |
Completed |
NCT02388243 -
The Computer-based Drug and Alcohol Training Assessment in Kenya
|
N/A | |
Completed |
NCT02218970 -
The Effect of Muscular Strength Training in Patients With Drug Addiction
|
N/A | |
Completed |
NCT01633138 -
Performance-based Reinforcement to Enhance Cognitive Remediation Therapy
|
N/A | |
Completed |
NCT01591239 -
Home-Based Program to Help Parents of Drug Abusing Adolescents
|
N/A | |
Active, not recruiting |
NCT01539525 -
Screening to Augment Referral to Treatment- Project START
|
Phase 2 | |
Withdrawn |
NCT01224002 -
A Comparative Feasibility Study to Assess the Prevalence and Severity of Dental Caries in Incarcerated People Who Abuse Methamphetamine
|
N/A | |
Withdrawn |
NCT00891631 -
Primary Care iSBIRT to Reduce Serious Teen Health Risks
|
Phase 1/Phase 2 | |
Completed |
NCT00970372 -
Dual-Diagnosis and Compulsory Treatment
|
N/A | |
Completed |
NCT01365247 -
Concurrent Treatment for Substance Dependent Individuals With Post-Traumatic Stress Disorder (PTSD)
|
N/A | |
Completed |
NCT00419029 -
Motivational Interviewing to Engage Operations Enduring Freedom and Iraqi Freedom (OEF/OIF) Veterans in Mental Health Treatment
|
N/A |