Clinical Trials Logo

Clinical Trial Summary

Patients with brain hemorrhage resulting from a ruptured aneurysm (SAH) are at risk of developing a condition called vasospasm, one or two weeks after their hemorrhage. This is a major cause of stroke and death following SAH. A special type of CT scan, called CT perfusion, analyzes regional blood flow in the brain. We hypothesize that CT perfusion scans performed on admission and day 6 post-hemorrhage will enable us to predict which patients will go on to develop vasospasm.


Clinical Trial Description

Rupture of a brain aneurysm results in a type of bleeding into the brain called subarachnoid hemorrhage (SAH). This is a substantial cause of morbidity and mortality world-wide: even with the best possible care, up to half of patients die and many are left disabled. Sometimes this is because the immediate brain damage from the bleed is very severe. However, many patients who seem to be doing well at first go on to develop something called "vasospasm": narrowing of large arteries in the brain. This results in the brain not getting enough blood, and the patient can suffer a stroke as a result. The lack of blood to the brain is called delayed cerebral ischemia (DCI), and is the major secondary cause of stroke and death in patients who survived the initial aneurysm rupture. Vasospasm can be seen on angiograms (blood vessel imaging) in about two-thirds of SAH patients, and causes neurological symptoms of DCI in half of those patients. It usually develops about a week or so after SAH. Early diagnosis and treatment of cerebral vasospasm and delayed cerebral ischemia (DCI) reduces morbidity and mortality in SAH patients. CT perfusion imaging is able to identify areas of reduced cerebral blood flow that are at risk of DCI and stroke. This technique is able to measure cerebral blood flow and blood volume (CBF, CBV), and calculates two other measures of cerebral perfusion: time to peak intensity (TTP) and mean transit time (MTT). Taken together, these provide information about the amount of blood the brain is receiving and whether the brain is compensating for any reduction in flow. This is helpful because seeing vasospasm on imaging is not enough to predict brain ischemia and stroke; the additional physiological information provided by the perfusion assessment strengthens the diagnosis of DCI. Early evidence suggests that CT perfusion is a fast, accurate, inexpensive and non-invasive method of brain imaging to identify patients with DCI after SAH, and guide appropriate therapy. If we were able to successfully predict which patients are at high risk of DCI and/or stroke, we could intervene early. This could improve patient outcomes, while potentially allowing better use of limited intensive care and nursing resources. Other studies have shown that patients with DCI had altered perfusion prior to developing clinical symptoms, but we do not know whether we can use CT perfusion to predict patients at risk, or which CT perfusion measurements (e.g., CBF or TTP) are most useful. The radiation risk associated with CT perfusion imaging is negligible, due to advances in CT technology which allow for routine simultaneous CT perfusion and CT angiogram (CTA) without a significant increase in radiation dose over conventional head CT-CTA alone. Judicious use of CT perfusion, through a structured algorithm that includes routine perfusion scans at admission and during the peak risk period for vasospasm, may actually decrease cumulative radiation dose for patients with SAH, by ruling out perfusion deficit and brain ischemia as a cause of decreased neurological function and limiting repeated angiograms. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02056769
Study type Interventional
Source Nova Scotia Health Authority
Contact
Status Active, not recruiting
Phase N/A
Start date April 2014
Completion date February 2024

See also
  Status Clinical Trial Phase
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Recruiting NCT04189471 - Recovery After Cerebral Hemorrhage
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Completed NCT05131295 - Dapsone Use in Patients With Aneurysmal Subarachnoid Hemorrhage. Phase 3
Recruiting NCT02962349 - TRansfusion Strategies in Acute Brain INjured Patients N/A
Completed NCT02872857 - Subarachnoid Hemorrhage Recovery And Galantamine Phase 1/Phase 2
Terminated NCT02216513 - Deferoxamine to Prevent Delayed Cerebral Ischemia After Subarachnoid Hemorrhage Phase 0
Completed NCT03164434 - Influence of Drainage on EVD ICP-signal
Completed NCT01077206 - High-dose Simvastatin for Aneurysmal Subarachnoid Haemorrhage Phase 2/Phase 3
Completed NCT02389634 - Identification of Novel Molecular Markers for Vasospasm
Not yet recruiting NCT00905931 - Lycopene Following Aneurysmal Subarachnoid Haemorrhage Phase 2
Completed NCT01261091 - Early Tracheostomy in Ventilated Stroke Patients N/A
Completed NCT00962546 - Computed Tomographic (CT) Perfusion and CT Angiography as Screening Tools for Vasospasm Following Subarachnoid Hemorrhage N/A
Completed NCT00507104 - Pituitary Functions After Traumatic Brain Injury (TBI) and/or Subarachnoid Hemorrhage (SAH)
Completed NCT00071565 - Familial Intracranial Aneurysm Study II N/A
Recruiting NCT05113381 - The Purpose of This Study is to Determine Whether CerebroFlo™ EVD Catheter is Effective During the Treatment of IVH N/A
Completed NCT04052646 - Prehospital Deaths From Spontaneous Subarachnoid Haemorrhages
Recruiting NCT04548596 - NOninVasive Intracranial prEssure From Transcranial doppLer Ultrasound Development of a Comprehensive Database of Multimodality Monitoring Signals for Brain-Injured Patients
Recruiting NCT06033378 - Blood Pressure Treatment in ICU Patients With Subarachniodal Haemorrhage. N/A
Completed NCT04308577 - Diet Induced Ketosis for Brain Injury - A Feasibility Study N/A